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Main Points

! GLF23 transport model has been renormalized

! Predicted fusion gain Q sensitive to temperature profile stiffness
and assumed auxiliary heat power

! Global formula that fits GLF23 fusion projections is found

! Fusion power scales with pedestal beta, Pfus ∝∝∝∝  (ββββped)2

! Ignition possible for reasonable pedestal beta values that are
expected to be MHD stable

! Need to know the power scaling and width of H-mode pedestal
pressure in order to predict fusion Q accurately
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GLF23 Transport Model Based Upon Turbulence
Simulations Shows Agreement With Profiles Across

Various Confinement Regimes
! Statistics computed core stored energy (subtracting pedestal region) using

exactly same model used for ITB simulations
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Recent Gyro-kinetic Simulations of ITG/ETG Turbulence
Motivates a Renormalization of the GLF23 Model

! For parameters used to normalize
GLF23, gyro-kinetic ITG mode
simulations predict a factor of 4 lower
saturation level than gyro-fluid
simulations

! ETG mode simulations show that
electron thermal transport levels are
significantly larger than when
assuming a square root of the mass
ratio scaling from ITG simulations

! GLF23 refit using a 50 shot H-mode
database from DIII-D, C-mod, JET
where normalizing coefficients for ITG
and ETG modes were adjusted
separately to minimize rms error in
stored energy

σσσσori = 10%      """"     σσσσrenorm = 8.7%
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Renormed GLF23 Model Does Not Agree as Well With
L-mode Profile Database Compared to Original Model

! Statistics computed for core stored energy (subtracting pedestal region)
! RMS error increased from σσσσ    =17% to 22%),

! Agreement better for DIII-D (σσσσ    =21%->16%), worse for TFTR (σσσσ =10.5%->28%)
geometric effects and/or TEM physics ?
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Renormed GLF23 Model Shows Agreement With
Gyro-kinetic ITG Simulations of Cyclone Test Case

! Ion heat diffusivity via ITG mode
computed using GYRO gyro-
kinetic code w/ adiabatic
electrons for Cyclone test case
(Waltz, Candy)

! Original model, normalized to
gyro-fluid simulations,
overpredicts diffusivity by more
than a factor of 3 at experimental
R/LTi

! Renormed GLF23 model shows
excellent agreement over a range
of R/LTi for Cyclone parameters
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Burning Plasma Projections

! The GLF23 model has been uniformly applied to ITER-FEAT, FIRE,
and IGNITOR and the fusion performance assessed
# Renormed model used
# Temperature profiles predicted while computing the effects of ExB shear

and Shafranov shift stabilization
# Toroidal rotation velocity assumed to be zero
# Density profiles, equilibrium, heating sources taken as inputs
# Assumed same plasma shape, safety factor profile
# Alpha heating, Ohmic heating, Bremsstrahlung, synchrotron radiation

self-consistently computed

! Fusion power predicted for a range of pedestal temperatures

! Both conventional H-mode (flat density, monotonic q-profile) and AT
scenarios (density peaking, reversed shear) considered

! Densities in FIRE and IGNITOR scaled so pedestal ββββ same as in ITER
to keep αααα-stabilization at pedestal fixed
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Burning Plasma Design Parameters

Physical Qty IGNITOR FIRE ITER-FEAT

R (m) 1.33 2.14 6.20
a (m) 0.46 0.60 2.00
κ 1.80 1.80 1.80
δ 0.40 0.40 0.40
B  (T) 13.0 10.0 5.30
I   (MA) 12.0 7.70

  4.8
15.0
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Fusion Projections Using Renormed GLF23
Somewhat More Optimistic Than Original Model

! Increase in ETG mode stiffness
somewhat offsets decrease in
ITG/TEM mode stiffness leading to a
small increase in fusion
performance

! Stiffness is a measure of how fast
the transport increases once the
critical gradient is exceeded

Stiff ➔ large diffusivity

Profiles unresponsive to 
additional power

! Pfus = 5 Pα , Q= Pfus /Paux

! Required Tped for Q=10 reduced by
11% from 4.4 keV to 3.9 keV

! Q scales approximately as (Tped)2
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Fusion Projections From Competing Drift Wave Based
Models Sensitive to Stiffness of Core Transport

! GLF23 (stiff) and Multi-mode (less
stiff) transport models predict very
different levels of performance

Q ∝  (Tped )1.8  : GLF23

Q ∝  (Tped )0.6  : MM

! Both drift-wave based models that
agree with experimental data
equally well

! Models agree at high Tped but
differ significantly at low Tped

! Identifying the true stiffness of the
core transport needs to be
resolved ! Carefully designed
experiments are needed
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Comparing Fusion Gain Q Between Various Proposed
Burning Plasma Devices Can Be Misleading

! Predicted fusion gain, Q=Pfus/Paux, is highly dependent on assumed Paux

! Compare 3 devices at same βped for a given nped by changing density

! Need better method for comparing performance between devices
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Pedestal Temperature for Sustaining H-mode Ignition (ITER)

! For Paux=40MW and ne/nG=0.85,
Q=10 obtained at Tped=3.9 keV

! Auxiliary power in ITER at Q=10
can be turned off and H-mode
maintained at same Tped

! Ignition possible at Tped > 3.2 keV
where pedestal power is higher
than H->L power threshold
(PLH/2=25 MW)

! Profiles collapse when radiation
limit approached at minimum Tped

! Need Tped=CPped ! Pped=Pα-Prad+Paux
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Pedestal Temperature for Sustaining H-mode Ignition (FIRE)

! For Paux=20MW and ne/nG=0.7,
Q=10 obtained at Tped=4.15keV

! Ignition possible at Tped > 3.3 keV
where pedestal power is higher
than H->L power threshold
(PLH/2=11 MW)

! Fusion gain similar to ITER for
ne/nG=0.7
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GLF23 Predictions Follow a Universal Curve With a
Fit to the Fusion Power That is Device Independent

! Seek simple formula characterizing
fusion performance that is general

! Take Pfus ∝  ni
2VF(T) where

V = κ(!a)2(2!R) is the volume

! Pfus from GLF23 scales as (Tped)
1.8

! Define fusion power fit to GLF23 runs

 Pfus= Vβped

2
[B2I/(aB)]

2
(ni/ne)

2
Cform

where Cform  is a form factor with
dilution, peaking and critical gradient
corrections

Nfit

Cform= K (ne/nped,e)
1.5

exp[2(2.15+(1- ni
 /ne) +.75(1+ν

-0.25
))/(R/a)]

           exp[2(+.00275Pnet (R/a)
1.5

/(βped

0

 Tped

1.5
))

2 
]

with K=6.7x10-5, Pnet= Paux + Pα , βped = βped /
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MHD Stability Constraints On Normalized Pedestal Beta

! MHD stability computed using

ELITE code (P. Snyder, P1C08)

! Limits due to intermediate-n

peeling-ballooning mode

instabilities

! Assuming a pedestal width of 0.03

times the minor radius sets a limit
of βped=0.7N
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Pedestal Beta Requirements for Fusion Performance

Device β0.5P
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25 0.70

11 1.08
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Summary

! Motivated by recent gyro-kinetic simulations, the GLF23 model has been
renormalized using a 50 shot H-mode database
# Agrees well with ITG simulations for Cyclone test case

# RMS error reduced somewhat for H-mode profile database

# Less stiff -> small increase in fusion Q using renormalized model

! Predicted fusion gain sensitive to temperature profile stiffness
# we need carefully designed experiments to test stiffness in plasma core

Q ∝  (Tped )1.8  : GLF23 Q ∝  (Tped )0.6  : MM

! Global formula fitting GLF23 fusion predictions has been found

! Fusion power scales as (ββββped ) 
2

! Ignition possible for reasonable pedestal beta values that have been
shown to be MHD stable (widths near 3% of minor radius)

! We need to know the power scaling and width of the H-mode pedestal
beta in order to predict the fusion Q accurately


