Testing H-mode Pedestal and Core Transport Models Using Predictive Integrated Modeling Simulations

> Glenn Bateman, A. H. Kritz, T. Onjun A. Pankin and C. Nguyen

Lehigh University Physics Department Bethlehem, PA 18015

International Sherwood Fusion Theory Conference

Outline

- H-mode pedestal models are used together with core plasma models in the BALDUR integrated modeling code
 - Integrated predictive simulations compared with experimental data
 - Simulations carried out for ITER and FIRE fusion reactor designs
- See the adjacent posters by A.H. Kritz and T. Onjun for the development of H-mode pedestal temperature models
 - T. Onjun, G. Bateman, A. H. Kritz, and G. Hammett, "Models for the Pedestal Temperature at the Edge of H-mode Tokamak Plasmas" April, 2002.
- These models are used in predictive simulations of experimental data to test them in the context of integrated modeling
- The pedestal and core models are then use in integrated simulations to predict the performance of the ITER and FIRE fusion reactor designs

International Sherwood Fusion Theory Conference

Integrated BALDUR Modeling Code

International Sherwood Fusion Theory Conference

BALDUR Transport Code

- Predicts time-dependent profiles for
 - electron and ion temperature
 - each ion density (hydrogenic and impurity)
 - magnetic $q(\mathbf{r},\mathbf{t})$
 - neutrals
- Self-consistent computations of
 - sources (such as NBI heating or fusion reactions)
 - sinks (such as impurity radiation)
 - transport fluxes
 - MHD equilibrium
 - large scale instabilities (such as sawtooth oscillations)

Modern turbulence-driven transport models are stiff

In a stiff transport model, the transport flux increases rapidly with increasing logarithmic temperature gradient, once that temperature gradient rises above a threshold value

International Sherwood Fusion Theory Conference

Predictive Versus Analysis Codes

Analysis Code

Compute source

Compute heat flux

Compute χ from heat flux (e.g., χ = - heat flux / $n \nabla T_{exp}$)

Compare χ from heat flux with χ from model

Compute χ from transport model

Compute $\nabla T/T$

Measured T profile

International Sherwood Fusion Theory Conference

Predictive Code

Compute source

Compute χ from transport model

Advance transport equations and predict T profile

Compare predicted T profile with measured T profile

Testing H-mode Pedestal Model in BALDUR Simulations of Experimental Data

- The development of our H-mode pedestal temperature models is described in the adjacent posters by A.H. Kritz and T. Onjun
 - A model for the H-mode pedestal density is described later in this poster
- The H-mode pedestal temperature model is tested here in BALDUR integrated simulations of experimental data
 - We used the pedestal model based on $\Delta \propto \rho s^2$ to predict T_{ped}
 - The standard Multi-Mode transport model used for core plasma
 - Simulations of gyro-radius scans shown in adjacent poster by T. Onjun
 - Simulations shown here for scans in power, density, and elongation
 - Statistics are used to summarize the results of all 12 simulations

International Sherwood Fusion Theory Conference

Objectives of BALDUR Simulations Using Model for T_{ped}

- Pedestal temperatures and densities are used as boundary conditions in the BALDUR integrated modeling code
- In the past, we used experimental data for these pedestal temperatures and densities
 - This use of experimental data made the simulations less predictive
- In the tests shown below, we use a model to predict T_{ped}
 - Simulations using the model for T_{ped} are compared with simulations using experimental data for T_{ped}
 - Both simulations are compared with experimental data for the profiles
 - Do the errors in the model for T_{ped} amplify or compensate with the errors in the integrated modeling of the core?

International Sherwood Fusion Theory Conference

Systematic scans

□ Simulations of systematic scans in DIII-D and JET have been carried out using BALDUR code

Discharge	D3D 77557	D3D 77559	D3D 81321	D3D 81329	D3D 81499	D3D 81507
Туре	Low power	High power	Low n _e	High <i>n_e</i>	Low ĸ	High κ
R (m)	1.68	1.69	1.69	1.70	1.69	1.61
a (m)	0.62	0.62	0.60	0.59	0.63	0.54
I _p (MA)	1.00	1.00	1.00	1.00	1.35	1.34
B (T)	1.99	1.99	1.98	1.97	1.91	1.91
κ	1.85	1.84	1.83	1.83	1.68	1.95
δ	0.33	0.35	0.29	0.36	0.32	0.29
ρ*(0)	0.011	0.014	0.012	0.012	0.012	0.016

Simulations of Power Scan

Minor Radius (m) 0.6 0.8

at 2.7 sec

Exp

Use predicted T_{ped}

Use experimental T

Model based on pedestal width scaling $\Delta \propto \rho s^2$

International Sherwood **Fusion Theory Conference**

Simulations of Density Scan

Model based on pedestal width scaling $\Delta \propto \rho s^2$

International Sherwood Fusion Theory Conference

Simulations of Elongation Scan

Model based on pedestal width scaling $\Delta \propto \rho s^2$

International Sherwood Fusion Theory Conference

RMS Errors for *T***_i Profile**

International Sherwood Fusion Theory Conference

Offsets for *T_i* **Profile**

International Sherwood Fusion Theory Conference

Average RMS Errors and Offsets

International Sherwood Fusion Theory Conference

H-mode Pedestal Density Scaling

Fusion Theory Conference

Integrated Modeling Simulations of ITER-FEAT and FIRE

- The BALDUR code is used to simulate fusion reactor designs ITER-FEAT and FIRE
 - BALDUR predicts the time evolution of plasma profiles temperature, density, current, power, Z_{eff}, neutrals, ...
- The objectives are to predict the performance of fusion reactor designs
 - Fusion power produced
 - Optimization of scenarios
 - Effect of varying density, Z_{eff} , auxiliary heating power
 - Effect of using different models

International Sherwood Fusion Theory Conference

Applications of T_{ped} Models

• Predict the edge temperature for future tokamak designs such as ITER-FEAT, FIRE and ITER-EDA

(Note that Ignitor is designed to operate in L-mode)

International Sherwood Fusion Theory Conference

Pedestal Temperature Predicted for ITER-FEAT

International Sherwood Fusion Theory Conference

Pedestal Pressure Predicted for ITER-FEAT

Pedestal pressure is almost independent of the pedestal density

International Sherwood Fusion Theory Conference

Effect of the Pedestal Models in Integrated Predictive Simulations of ITER and FIRE

- Effect of changing plasma density and heating power:
 - The pedestal density is proportional to the average plasma density
 - The pedestal temperature in type I ELMy H-mode plasmas is
 - independent of heating power, and
 - T_{ped} is nearly inversely proportional to n_{ped} (for all of the models)
 - The core temperature profile depends sensitively on the pedestal temperature because the core transport models are stiff
 - Fusion power production scales like n^2T^2 for $10 < T_i < 20$ keV
- Hence, increasing the plasma density causes the following:
 - Pedestal density increases proportional to average plasma density
 - Pedestal temperature decreases with increasing density
 - For perfectly stiff core transport model, n^2T^2 remains nearly constant
 - Fusion power from the region $10 < T_i < 20$ keV remains constant

International Sherwood Fusion Theory Conference

Fusion Q vs T_{ped} for ITER-FEAT

- Fusion $Q \equiv 5 P_{\alpha} / P_{aux}$
- ITER-FEAT with *P*_{aux} = 40 MW with 2% Be + 0.12% Ar + Helium
- These simulations use the Multi-Mode transport model and a choice of two pedestal models
- With density held fixed, the fusion Q rises rapidly with T_{ped}
- However, only plasma density can be controlled pedestal models indicate that T_{ped} is inversely related to n_{ped}
- Note that fusion power $\propto n^2 T^2$ for 10 < T < 20 keV
- Here, fusion power decreases at higher temperature and lower density

International Sherwood Fusion Theory Conference

Fusion Q vs $< n_e > /n_{GW}$ for ITER-FEAT

- Multi-Mode model used in BALDUR simulations of ITER-FEAT density scan
 - Fusion $Q \equiv P_{\alpha}/P_{aux}$
 - $< n_e > / n_{GW} \equiv$ average plasma density normalized by the Greenwald density

$$n_{\rm GW} = I_{\rm p} / (\pi a^2) = 1.1 \times 10^{20} \, {\rm m}^{-3}$$

$$-P_{aux} = 40 \text{ MW}$$

- 2% Be + 0.12% Ar + Helium yields $Z_{eff} \approx 1.5$
- Plasma density can be controlled in tokamaks, but not pedestal temperature
 - T_{ped} from all of the pedestal models inversely related to density
 - T_{i0} varies from 29 to 19 keV as density is increases from $< n_e > / n_{GW} = 0.35$ to 0.85

International Sherwood Fusion Theory Conference

Effect of Z_{eff} on Fusion Q in ITER-FEAT

- Increasing Z_{eff} decreases P_{α} and fusion Q
 - These simulations were carried out with Carbon impurity
- From previous studies of ITER-EDA
 - We know that the dilution caused by impurities has a strong effect on P_{α}
 - This effect is amplified in a marginal fusion burn

International Sherwood Fusion Theory Conference

Effect of Auxiliary Heating Power on Fusion Q in ITER-FEAT

- Largest fusion Q obtained with lowest auxiliary heating power
 - Plasma temperature profile and, hence, alpha heating power is only weakly dependent on heating power because of stiffness of transport model
- Cannot decrease total heating power below H-mode threshold (about 49 MW in ITER-FEAT)
- Here, <n_e>/n_{GW} = 0.84 n_{GW} = 1.1×10²⁰ 2% Be + 0.12% Ar + He

Pedestal Temperature Predicted for FIRE

Parameters for FIRE				
R	2.14 m			
a	0.595 m			
Ι	7.7 MA			
В	10 tesla			
K ₉₅	1.77			
δ ₉₅	0.4			
Z _{eff}	1.6			
$A_{ m H}$	2.5 AMU			
P _{aux}	20 MW			

International Sherwood Fusion Theory Conference

Fusion Q vs T_{ped} for FIRE

- Fusion Q = 5 P_{α} / P_{aux}
- FIRE with R=2.14 m, a=0.595 m, B=10 tesla, $I_p=7.7$ MA, $P_{aux} = 30$ MW and $Z_{eff} = 1.4$
- These simulations use the Multi-Mode transport model and two pedestal models
- With density held fixed, the fusion Q rises with T_{ped}
- When using the pedestal models, T_{ped} is inversely related to n_{ped}

International Sherwood Fusion Theory Conference

Fusion Q vs <n_e>for FIRE

• BALDUR simulations of FIRE density scan using Multi-Mode transport model

- Fusion
$$Q \equiv P_{\alpha}/P_{aux}$$

- $\langle n_e \rangle / n_{GW} \equiv$ average plasma density normalized by the Greenwald density $n_e = L/(\pi a^2) = 6.02 \times 10^{20}$

$$n_{\rm GW} = I_{\rm p} / (100^{-1}) = 0.92 \times 10^{-1}$$

$$-$$
 P_{aux} = 30 MW, Z_{eff} = 1.4

- Plasma density can be controlled in tokamaks
 - T_{ped} from models inversely related to density

International Sherwood Fusion Theory Conference

Effect of Auxiliary Heating Power on Fusion Q in FIRE

- Largest fusion Q obtained at lowest auxiliary heating power
 - Plasma temperature profile and, hence, alpha heating power is only weakly dependent on heating power because of stiffness of transport model
- Cannot decrease total heating power below H-mode threshold (about 26 MW)
- Here, $< n_e > / n_{GW} = 0.7$ $n_{GW} = 6.92 \times 10^{20}$ 3% Be + Helium

International Sherwood Fusion Theory Conference

Conclusions

- H-mode pedestal temperature model can now be used as the boundary condition for integrated predictive modeling
 - Average RMS deviation is approximately 10%, which is nearly the same as when pedestal height is taken from experimental data
 - Improvement could be made by using separate models for the electron and ion pedestal temperatures
 - An automated procedure that predicts the onset of H-mode as well as models for $T_{e,ped}$, $T_{i,ped}$, and $n_{e,ped}$ will be tested this summer
- H-mode pedestal models used in BALDUR simulations of ITER-FEAT and FIRE fusion reactor designs
 - Predictions are made using Multi-Mode model for conventional H-mode scenarios (no Internal Transport Barriers or pellet injection)
 - Fusion Q = 11.4 for ITER with $P_{aux} = 40$ MW
 - Fusion Q = 5.5 for FIRE with $P_{aux} = 20$ MW
 - Fusion Q increases with decreasing P_{aux} and decreasing Z_{eff}

International Sherwood Fusion Theory Conference

