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Outline
• H-mode pedestal models are used together with core plasma

models in the BALDUR integrated modeling code
– Integrated predictive simulations compared with experimental data
– Simulations carried out for ITER and FIRE fusion reactor designs

• See the adjacent posters by A.H. Kritz and T. Onjun for the
development of H-mode pedestal temperature models
– T. Onjun, G. Bateman, A. H. Kritz, and G. Hammett,  “Models for the Pedestal

Temperature at the Edge of H-mode Tokamak Plasmas” April, 2002.

• These models are used in predictive simulations of experimental
data to test them in the context of integrated modeling

• The pedestal and core models are then use in integrated
simulations to predict the performance of the ITER and FIRE
fusion reactor designs
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BALDUR Transport Code

• Predicts time-dependent profiles for
– electron and ion temperature
– each ion density (hydrogenic and impurity)
– magnetic q(r,t)
– neutrals

• Self-consistent computations of
– sources (such as NBI heating or fusion reactions)
– sinks (such as impurity radiation)
– transport fluxes
– MHD equilibrium
– large scale instabilities (such as sawtooth oscillations)
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Stiff Transport Models
Modern turbulence-driven transport models are stiff
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In a stiff transport model, the transport flux increases rapidly
with increasing logarithmic temperature gradient,
once that temperature gradient rises above a threshold value
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Predictive Versus Analysis Codes
Predictive Code

Compute source

Compute χχχχ from transport model

Advance transport equations
and predict T profile

Compare predicted T profile
with measured T profile

Analysis Code
Compute source

Compute heat flux

Compute χχχχ from heat flux
(e.g., χχχχ = - heat flux / n ∇∇∇∇ Texp)

Compare χχχχ from heat flux
with χχχχ from model

⇑⇑⇑⇑
Compute χχχχ from transport model

⇑⇑⇑⇑
Compute ∇∇∇∇ T/T

⇑⇑⇑⇑
Measured T profile
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• The development of our H-mode pedestal temperature models
is described in the adjacent posters by A.H. Kritz and T. Onjun
– A model for the H-mode pedestal density is described later in this poster

• The H-mode pedestal temperature model is tested here in
BALDUR integrated simulations of experimental data
– We used the pedestal model based on ∆∆∆∆ ∝∝∝∝  ρρρρ s2 to predict Tped

– The standard Multi-Mode transport model used for core plasma

– Simulations of gyro-radius scans shown in adjacent poster by T. Onjun

– Simulations shown here for scans in power, density, and elongation

– Statistics are used to summarize the results of all 12 simulations

Testing H-mode Pedestal Model in BALDUR
Simulations of Experimental Data
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Objectives of BALDUR Simulations
Using Model for Tped

• Pedestal temperatures and densities are used as boundary
conditions in the BALDUR integrated modeling code

• In the past, we used experimental data for these pedestal
temperatures and densities
– This use of experimental data made the simulations less predictive

• In the tests shown below, we use a model to predict Tped

– Simulations using the model for Tped are compared with simulations
using experimental data for Tped

– Both simulations are compared with experimental data for the profiles

– Do the errors in the model for Tped amplify or compensate with the
errors in the integrated modeling of the core?
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Systematic scans

� Simulations of  systematic scans in DIII-D and
JET have been carried out using BALDUR code
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Simulations of Power Scan

Model based on pedestal width scaling  ∆∆∆∆ ∝∝∝∝  ρρρρ s2
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Simulations of Density Scan

Model based on pedestal width scaling  ∆∆∆∆ ∝∝∝∝  ρρρρ s2
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Simulations of Elongation Scan

Model based on pedestal width scaling  ∆∆∆∆ ∝∝∝∝  ρρρρ s2
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RMS Errors for Ti Profile
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Offsets for Ti  Profile
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Average RMS Errors and Offsets
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H-mode Pedestal Density Scaling

• Empirical fit for
   density model

• RMS = 12.1% 
• Agreement breaks 

down at high density

nn 71.0ped =
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Integrated Modeling Simulations
of ITER-FEAT and FIRE

• The BALDUR code is used to simulate fusion
reactor designs ITER-FEAT and FIRE
– BALDUR predicts the time evolution of plasma profiles

temperature, density, current, power, Zeff, neutrals, …

• The objectives are to predict the performance of
fusion reactor designs
– Fusion power produced
– Optimization of scenarios
– Effect of varying density, Zeff, auxiliary heating power
– Effect of using different models
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Applications of Tped Models

• Predict the edge temperature for future tokamak
  designs such as ITER-FEAT, FIRE and ITER-EDA

(Note that Ignitor is designed to operate in L-mode)
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ITER-FEAT FIRE ITER-EDA
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Pedestal Temperature Predicted for ITER-FEAT

Parameters for ITER-FEAT

40 MW Paux

2.5 AMU AH

1.9 Zeff

0.33δδδδ95

1.7κκκκ95

5.3 tesla B

15.0 MA I

2.0 m a

6.2 m R
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3
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3
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θρε∝∆

Rθβ∝∆
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Pedestal Pressure Predicted for ITER-FEAT
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Pedestal pressure is almost independent of the pedestal density
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Effect of the Pedestal Models in Integrated
Predictive Simulations of ITER and FIRE

• Effect of changing plasma density and heating power:
– The pedestal density is proportional to the average plasma density
– The pedestal temperature in type I ELMy H-mode plasmas is

• independent of heating power, and
• Tped is nearly inversely proportional to nped    (for all of the models)

– The core temperature profile depends sensitively on the pedestal
temperature because the core transport models are stiff

– Fusion power production scales like n2T2 for 10 < Ti < 20 keV

• Hence, increasing the plasma density causes the following:
– Pedestal density increases proportional to average plasma density
– Pedestal temperature decreases with increasing density
– For perfectly stiff core transport model, n2T2 remains nearly constant
– Fusion power from the region 10 < Ti < 20 keV remains constant
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Fusion Q vs Tped for ITER-FEAT

• Fusion Q ≡≡≡≡ 5 Pαααα / Paux

• ITER-FEAT with Paux = 40 MW
with 2% Be + 0.12% Ar + Helium

• These simulations use the
Multi-Mode transport model and
a choice of two pedestal models

• With density held fixed, the fusion Q rises
rapidly with Tped

• However, only plasma density can be
controlled — pedestal models indicate
that Tped is inversely related to nped

• Note that fusion power ∝∝∝∝  n2 T2

for 10 < T < 20 keV

• Here, fusion power decreases at
higher temperature and lower density

∆∝ρ s2

Rθβ∝∆

<ne>/nGW
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0.65

0.50

0.35

Pedestal Models
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• Multi-Mode model used in BALDUR
simulations of ITER-FEAT density scan

– Fusion Q ≡≡≡≡ Pαααα/Paux

– <ne>/nGW ≡≡≡≡ average plasma density
normalized by the Greenwald density

      nGW = Ip/(ππππa2) = 1.1××××1020 m-3

– Paux = 40 MW
– 2% Be + 0.12% Ar + Helium

yields Zeff ≈≈≈≈ 1.5

• Plasma density can be controlled in
tokamaks, but not pedestal temperature

– Tped from all of the pedestal models
inversely related to density

– Ti0 varies from 29 to 19 keV
as density is increases from
 <ne>/nGW = 0.35 to 0.85

Fusion Q vs <ne>/nGW for ITER-FEAT

MMM

--- ∆∝ρ s2
Rθβ∝∆
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Effect of Zeff on Fusion Q in ITER-FEAT

• Increasing Zeff decreases
Pαααα  and fusion Q
– These simulations were carried

out with Carbon impurity

• From previous studies of
ITER-EDA
– We know that the dilution

caused by impurities has a
strong effect on Pαααα

– This effect is amplified in a
marginal fusion burn

Rθβ∝∆

--- ∆∝ρ s2

ITER-FEAT
MMM transport model
Paux = 40 MW
Carbon impurity
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Effect of Auxiliary Heating Power
on Fusion Q in ITER-FEAT

• Largest fusion Q obtained with
lowest auxiliary heating power

– Plasma temperature profile and,
hence, alpha heating power is only
weakly dependent on heating power
because of stiffness of transport
model

• Cannot decrease total heating power
below H-mode threshold
(about 49 MW in ITER-FEAT)

• Here, <ne>/nGW = 0.84
nGW = 1.1××××1020

2% Be + 0.12% Ar + He

Rθβ∝∆

--- ∆∝ρ s2

MMM
Zeff = 1.74
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Pedestal Temperature Predicted for FIRE

Parameters for FIRE

20 MW Paux

2.5 AMU AH

1.6 Zeff

0.4δδδδ95

1.77κκκκ95

10 tesla B

7.7 MA I

0.595 m a

2.14 m R
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Fusion Q vs Tped  for FIRE
• Fusion Q = 5 Pαααα / Paux

• FIRE with R=2.14 m, a=0.595 m,
B=10 tesla, Ip=7.7 MA,
Paux = 30 MW and Zeff = 1.4

• These simulations use the
Multi-Mode transport model and
two pedestal models

• With density held fixed, the fusion Q
rises with Tped

• When using the pedestal models,
Tped is inversely related to nped

∆∝ρ s2
Rθβ∝∆

<ne>/nGW= 0.9 0.7
0.50

0.3

Pedestal Models
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• BALDUR simulations of FIRE
density scan using Multi-Mode
transport model

– Fusion Q ≡≡≡≡ Pαααα/Paux

– <ne>/nGW ≡≡≡≡ average plasma density
normalized by the Greenwald
density
nGW = Ip/(ππππa2) = 6.92××××1020

– Paux = 30 MW, Zeff = 1.4

• Plasma density can be controlled in
tokamaks

– Tped from models inversely related
to density

Fusion Q vs <ne> for FIRE

MMM

Rθβ∝∆

--- ∆∝ρ s2

Reference
design



International Sherwood
Fusion Theory Conference

22-24 April 2002

0
1
2
3
4
5
6
7
8
9

10

10 20 30 40

Paux (MW)

Fu
si

on
 Q

Effect of Auxiliary Heating Power
on Fusion Q in FIRE

• Largest fusion Q obtained at lowest
auxiliary heating power

– Plasma temperature profile and,
hence, alpha heating power is only
weakly dependent on heating power
because of stiffness of transport
model

• Cannot decrease total heating power
below H-mode threshold (about 26
MW)

• Here, <ne>/nGW = 0.7
nGW = 6.92××××1020

3% Be + Helium
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Conclusions
• H-mode pedestal temperature model can now be used as the

boundary condition for integrated predictive modeling
– Average RMS deviation is approximately 10%, which is nearly the

same as when pedestal height is taken from experimental data
– Improvement could be made by using separate models for the

electron and ion pedestal temperatures
– An automated procedure that predicts the onset of H-mode as well as

models for Te,ped, Ti,ped, and ne,ped will be tested this summer

• H-mode pedestal models used in BALDUR simulations of
ITER-FEAT and FIRE fusion reactor designs
– Predictions are made using Multi-Mode model for conventional

H-mode scenarios (no Internal Transport Barriers or pellet injection)
– Fusion Q = 11.4 for ITER with Paux = 40 MW
– Fusion Q = 5.5 for FIRE with Paux = 20 MW
– Fusion Q increases with decreasing Paux and decreasing Zeff


