Pedestals and Confinement

R.E. Waltz

Global confinement is highly dependent on the pedestal height

- If the core confinement is "stiff, gobal confinement is highly dependent on the H-mode pedestal temperature, T_ped. What does "stiff" mean?
- The core is "perfectly stiff", if T(0) is <u>linear</u> with T_ped and <u>independent</u> of power P_ped.
- The theoretical core transport models in standard use, GLF23 and Multi-Mode, are not perfectly stiff, but Multi-Mode has some stiffness T(0) α T_ped^{0.3} and GLF23 is very stiff T(0) α T_ped^{0.7}
- While the core theoretical transport models can predict global confinement time to better than 10% given T_ped, empirical statistical scaling models for T_ped are typically 30%. Hence for very stiff models the combination likely has less predictability for confinement time than global τ_E scaling laws, typically 15%.
- For very stiff models Q can be uncertain by 50%, and predicting the H-mode pedestal heights is the focus of our uncertainty in predicting BPX performance.

Core Transport Models

The past decade has seen considerable progress in understanding of core transport and development of theoretical core transport models.

• The focus has been on two comprehensive models: GLF23renorm and MutiMode

• These theoretical drift wave based models with ExB shear stabilization have been very successful in matching the ITER profile data L- and H-mode database given the pedestal temperature and density, and in describing internal transport barriers.

• GLF23renorm is fit to gyrokinetic linear stability and nonlinear simulations taking nothing from data, yet predicts core stored energy with RMS 8.7%.

• MultiMode has similarly good fit statistics.

- (a) GLF23renorm comparison with H-mode data
- (b) model Q /Q_norm vs T_ped $Q_{norm} = \kappa R (I/a)^2 (n_{ped}/n_G)^2 (n_i/n_e)^2 (n_e/n_{ped})^{1.5} C_{RLT}/P_{aux}$ with $C_{RLT} = \exp[2(2.0 + .004P_{net})/(R/a) + 0.5(1-n_i/n_e)]$

(see Kinsey Sherwood talk)

- While both models have similar ITG and trapped electron physics and comparable RMSE fits to data, they not only have quantitatively, but qualitatively, different Q –projections.
- While GLF23renorm is not as stiff as IFS-PPPL and '96GLF23, it is still very stiff with Q having nearly inverse P_aux dependence. Approximatedly:
 - Q α Volume n_ped² T_ped² / P_aux (see Kinsey Sherwood talk)

• This means Q can be doubled by halving P_aux required to get into H-mode, and P_fus is insensitive to P_aux.

• Since (as we will discuss), the projected T_ped α 1 / n_ped, Q depends weakly on n_ped / n_Greenwald , and pedestal projections should focus on predicting maximum

p_ped or better beta_norm_ped = beta_ped / (I /aB)

• MultiMode as is much less stiff with Q α Volume n_ped² T_ped / P_aux^{0.25}

Examples GLF23 / MM with Onjun-Bateman et al T_ped Model

Kinsey, Onjun, Batman, et al

- Thus core transport model stiffness is a key issue, but we shouldn't need a BPX to resolve this difference.
- W_tot / W_ped αP^{S} roughly: GLF23renorm: s = 0.1, MultiMode: s = 0.2
 - Remarkably, ITER database statistical free fits over all data machine says

W_tot $\alpha P^{0.31}$ and W_ped $\alpha P^{0.31}$ suggesting perfect stiffness, i.e. s=0. m 0.05 (recent Thomsen, Cordey et al paper)

• Precise controlled single machine P scaling data or new experiments should be able to distinguish between s=0.1 and s=0.2

Stiff cores are magical for getting high Qeven ignition Q = infinity with $P_{aux} = 0$!!!! If there is enough power flow P_{ped} to maintain the pedestal temperature T_{ped} $P_{fus} = 5 P_{\alpha}$; $Q = P_{fus}/P_{aux}$; $P_{ped} = P_{\alpha} - P_{brem} + P_{aux} > 1/2 P_LH$ 300 500 P_{aux}=40 MW = 40 MW Q=10 Q=10 P_{ped}=93 MW P_{ped}=47 MW Ρ P_{aux}=0 MW $P_{aux} = 0 MW$ 250 400 P_{ped}=23 MW P_{ped}= 48 MW FIRE (MM) 200 (MM) H-mode collapse P_{ped}= 0.5P_{LH}= 25 MW (?) H-mode collapse 300 =P_{LH/2}=11[`]MW ? 150 P $\mathsf{P}_{\mathsf{fus}}$ 200 100 ped=18 MW .=37 MW 100 50 Rad. collapse P_{ped}= 0 Rad. collapse P_{ped}=0 0 1.5 2 2.5 3 3.5 1.5 2 2.5 3.5 3 4 1 4 4.5 5 1 T_{ped} (keV) T_{ped} (keV)

We need to know power dependence (σ) for T_ped = T_ped_LH (P_{ped} / P_LH)^σ

GENERAL ATOMICS

H-mode Pedestal Height

- Although we have some understanding of how T_ped is determined, we don't have theroretical models. Projected T_ped is largely based on statistical empirical fits.
 - The "best" fits to all machine data are characterized by an RMS of 27%.
 - If core transport model projections are perfect, and Q α T_ped², then

Q = 5 is really 2.65 < Q < 8.10 Q = 10 5.3 < Q < 16.2

• Approaches to finding the pedestal height:

• Free statistical fit: W_ped = 3 p_ped Volume (e.g. Thomsen, Cordey et al paper*)

$$W_{ped} = e^{-3.74} I^{1.71} R^{1.16} P^{0.31} M^{0.30} q_{sh}^{1.20} RMS = 25.4\% *$$

Stat. fit of width_ped with approx. high-n MHD stability gradient constraint P⁰
p_ped = width_ped [dp/dr]_crit e.g. width_ped α rho_pol^{0.23} R^{0.77}
 $W_{ped} = e^{-4.61} I^{2} R [M/nR^{2}]^{0.13} q_{sh}^{1.20} [a/R]^{-1.68} RMS = 27.3\% *$
or width_ped α beta_pol^{0.5} R^{1.0} is a popular choice suggested by DIIID data

Problems with statistical approaches:

• Existing fits lump all data, when likely there is a low power P- dependent regime, and the stiff P-independent MHD fits likely apply only to a high power saturated regime.

• Detailed peeling - ballooning mode edge stability with real equilibria varying width_ped, finds that [d p / dr]_crit depends on width_ped, e. g. p_ped α width_ped^{0.7} and furthermore edge stability (and ELM's) depend sensitively on edge shaping and edge bootstrap current (breaking density independence). (*Snyder recent APS talk*)

Better not to focus on width_ped, or T_ped but instead on maximum attainable

 β_{N} _ped : beta_norm_ped = beta_ped / (I /aB)

H-mode Pedestal Height (cont'd)

• Some example edge stability studies for β_{N_p} or β_{N_p} vs pedestal width (Snyder)

GENERAL ATOMICS

The physics mystery behind the pedestal

- beta_ped = (width_ped / a) (q/R) s / q² approx. high-n MHD stability limit
 Keeping shapes (s, q, a/R) the same :
 - Is the layer width determined by the MHD stability allowed ? (width_ped /a) α (β_pol_ped) $^{0.5} \alpha$ (n_ped T_ped) $^{0.5}$ / B_pol
 - or, by the cause of the good confinement layer ?turbulence growth rates compared to diamagnetic ExB shear rates (width_ped /a) α $\rho_{star_pol_ped} \alpha$ (T_ped)^{0.5}/ (a B_pol)
- Hard to distinguish scaling difference between $\rho_{star_pol_ped}$ and (β_{pol_ped}) ^{0.5}, but $\rho_{star_pol_ped} / (\beta_{pol_ped})^{0.5} \propto 1/[a n_{ped}^{0.5}] \propto 1/[a B (n_{ped}/n_G)]^{0.5}$
- [a B] is going to get larger [ITER, FIRE, Ig] 10, 6, 6 [JET] 4.3 but not a lot, maybe offset with smaller (n_ped/n_G)

• Examples from a very stiff model:

fit to many GLF23renorm transport code runs for ITER, FIRE, IGNITOR at q_95 = 3, κ =1.8 P_fus = volume (beta_ped_N)² [B² (I/a/B)]²

- x exp [2.(2.15+(1.-(n_i/n_e))+0.75(1.+0.5/ $v^{0.25}$)) / (R/a)]
- x exp [2.(0.00275 P_ped (R/a) $^{1.5}$ / T_ped $^{1.5}$)²]

where $v = 0.1 \text{ n_line_19 R / T_ped}^2$ and volume = $\kappa (\pi a^2) (2\pi R)$ [meters, Tesla, MA, keV, MW, n_19, etc]

beta_ped_N = beta_ped/(I/a/B)

P_ped = P_fus / 5. – P_brem + P_aux + P_oh Q = P_fus / P_aux (see Kinsey Sherwood talk)

GLF23renorm fit core + Thomsen-Cordey MHD-pedestal rule compared to y2 and gB_perkins H global τ_E scaling

 $n_{n_{ped} = 1.4, T(0)/T_{ped} = 5.0, T(0)/(T) = 2.6, <\beta > N / \beta _{ped_N} = 3.32$

ITER-FEAT

P_aux	n_line / n_G	core	-ped mod	el	у2				gB_perkins		
MW		Q	β_ped_N	T_ped	Q	β_ped_N	T_ped	Q	β_ped_N	T_ped	
40	0.86	4.9	0.42	2.9	11.	0.50	3.5	31	0.86	6.0	
20		9.4	0.42	2.9	15.	0.43	3.0	49 .	0.79	5.3	

FIRE

P_aux	n_line / n_G	core-pe	d mode	I	y2			gB_perkins		
MW		Ο β_ρ	ed_N	T_ped	Q β_	ped_N	T_ped	Ο β	_ped_N	T_ped
20	0.70	4.1	0.58	2.8	4.4	0.43	2.0	8.	0.54	2.6
		4.8 *	0.61*	2.9	8.5 #	0.55	2.6	19. #	0.82	3.9
10		8.2	0.58	2.8	2.9	0.30	1.4	2.8	0.30	1.4
		5.3*	0.47*	2.3	9.7 #	0.44	2.0	24 . #	0.68	3.1

* Thomsen-Cordey free-fit power scaled pedestal rule

hh=1.15

