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This report is prepared as a contribution to the uniform technical assessment of pedestal physics
issues for the burning plasma candidates, ITER, FIRE, and Ignitor.  Issues falling under both the
MHD (P3) and transport (P4) topical groups are considered.

I. Introduction & Motivation

The term “pedestal” is used here to describe the sharp pressure gradient region just inside the
magnetic separatrix (or limiter, if one is present) in H-mode operation.  This region generally
occupies approximately the outer 1-5% in normalized radius of the closed flux surface region,
but is observed to have a disproportionately large impact on overall plasma performance [see
e.g., Refs. 1-3].

The physics of the pedestal is expected to be critically important to the performance of burning
plasma devices for two primary reasons.  The first is the strong dependence, both observed and
predicted by transport models, of core confinement on the pressure at the top of the pedestal (or
“pedestal height”).  Core transport models (e.g., GLF23, Multi-Mode, IFS-PPPL) take the
pedestal height as an input parameter, and predict the resulting transport in the core.  Because
these models are “stiff” (transport increases rapidly above a critical gradient), the predicted core
temperature, and hence fusion power or Q=Pfus/Pin, increases strongly with increasing pedestal
height.  For GLF23, the dependence is roughly Pfus~b2

ped, where bped is the ratio of plasma to
magnetic pressure at the top of the pedestal (see the transport section of this report for further
details). Hence, transport code predictions for the burning plasma candidates can be restated in
terms of the pedestal height (or at a given density, the pedestal temperature) requirements for a
given level of fusion performance.

The second important pedestal physics issue is the presence of edge localized modes (ELMs).
ELMs are repetitive magnetic perturbations in the pedestal vicinity, which transport bursts of
particles, and usually also heat, across the separatrix and to the divertor plates [see e.g., Refs. 4-
7].  While the ELMs themselves are generally benign in present experiments, large ELMs
potentially pose a significant divertor erosion risk in burning plasma scale devices.  Furthermore,
ELMs appear to be a manifestation of magnetohydrodynamic instabilities driven by some
combination of the strong pressure gradient and resulting bootstrap current in the pedestal region.
These instabilities place constraints on the achievable pedestal height at a given transport barrier
width, and thus constrain overall performance as discussed above.  Developing a predictive
understanding of the physics controlling ELMs and the pedestal height is an important goal for
pedestal theory, and also a key motivation for building a burning plasma scale device to explore
pedestal physics and establish a high pedestal, small ELM regime at relevant fusion reactor
parameters.



While there has been significant recent progress in understanding certain aspects of pedestal
physics, great uncertainty remains in many areas.  In particular, the physics governing the L-H
transition, and limiting the width of the resulting transport barrier is not well understood.  As a
result, a complete assessment of pedestal issues in the burning plasma candidates is challenging.

One area of recent progress has been in the tentative identification of ELMs with intermediate
wavelength MHD instabilities.  Theory/experiment comparisons on a number of experiments
(DIII-D, Alcator C-Mod, Asdex-U, JET, JT-60U) have found that the onset of ELMs, and when
measurable the wavelength and penetration depth of ELMs, are generally consistent, within
experimental uncertainty, with the predicted onset and characteristics of MHD peeling-
ballooning instabilities [see e.g., Refs. 8-13].

These peeling-ballooning instabilities are driven by the sharp pressure gradients, and resulting
large bootstrap current in the pedestal region [see e.g., Refs. 13-14].  Field line bending stabilizes
long wavelength modes, while short wavelengths are stabilized by a combination of second
stability and FLR/diamagnetic effects, shifting the limiting modes to intermediate wavelengths
(n~4-30).  These intermediate-n modes impose constraints on the pedestal height, which are
functions of the pedestal width, plasma shape, and plasma density.  Within the ideal MHD
framework, and the uncertainties in reconstructed or model equilibria, it is possible to
quantitatively characterize these constraints using existing codes.  Such characterizations have
been useful in predicting observed trends in pedestal height, for example with plasma
triangularity, squareness, and collisionality [e.g., Refs. 3,7,11-13] .  While this is an active area
of research, and a number of aspects, particularly the impact of sheared flow and non-ideal
effects, remain to be fully investigated, it is nonetheless deemed useful to conduct an
investigation of the MHD pedestal stability constraints in ITER, FIRE and Ignitor model
equilibria.  These calculations should provide an approximate feasibility check on the required
pedestal heights predicted by the core transport modeling.  They also provide a starting point for
the modeling of non-ideal effects, and they can be combined with empirical or semi-empirical
models of the pedestal width to yield very approximate predictions of achievable pedestal height
in the candidate machines.  Analysis of the most unstable wavelengths and mode penetration also
provides input to models projecting ELM size.

Details of the construction of model equilibria with varying pedestal characteristics, and the
characterization of ideal intermediate mode number (n) MHD pedestal stability limits are given
in Section II.  Non-ideal effects, including an assessment of diamagnetic stabilization using
simple models, are considered in Section III.  A summary of the pedestal stability study is given
in Section IV, and implications, including brief discussion of empirical pedestal models, are
discussed in Section V.

II. Assessment of Ideal MHD Pedestal Stability Constraints

II.a. Model Equilibria

In order to characterize pedestal MHD stability limits, a large number of equilibria must be
constructed which incrementally vary the pedestal width and height.  For these purposes the



details of the equilibrium deep in the core are relatively unimportant, but should be broadly
consistent with expected profiles for each device.

Ignitor requires some special consideration, since its reference operation point is in L-mode.
However, L-mode operation does not impact the performance predictions from core transport
codes, which predict the required pressure values in the outer region, e.g., at the 95% flux
surface (that is, the L-mode equivalent of the pedestal height), needed for good performance.
Thus if one accepts the core transport predictions, one must either argue that these large outer
region pressures are achievable in L-mode, or propose H-mode operation.  In either case, the
pedestal stability limits should provide a useful figure of merit.  Furthermore, the Ignitor team
has recently proposed possible H-mode scenarios.  So, in the spirit of a uniform assessment, the
stability constraints on H-mode pedestals will be studied in Ignitor just as in the other proposed
devices.  [It has been suggested that it would be useful to explore Ignitor operation at lower
current (Ip~9MA), where H-mode operation is expected to be more easily achieved.  Reduced
current lowers I/aB and thus may lower the pedestal beta limit (Fig. 3b) somewhat, but a detailed
pedestal stability investigation of a 9MA scenario awaits further work.]

Model equilibria have been constructed to match the global parameters for each machine given
in Table 1.  These should be consistent with the design parameters for the reference cases, except
for small modifications to the density of FIRE.

ITER FIRE Ignitor
Bt (T)

Ip (MA)
R (m)
a (m)

ka
da

<ne>(1020m-3)

5.3
15
6.2
2.0

1.85
0.49
1.0

10
7.7

2.14
0.595
2.0
0.7
3.6

13
11

1.33
0.455
1.8
0.4
9.5

Table 1: Reference parameters for the model equilibria

Density and temperature profiles are given a hyperbolic tangent shape in the pedestal
[resembling measured profiles, see e.g. Refs. 3,1], and a simple polynomial dependence in the
core:

where Y is the normalized poloidal flux, and D is the pedestal width in Y space.  The constants
a0 and a1 are chosen to give the desired pedestal and axis values, and a0 and a1 are chosen to
approximately match expected core profiles from transport codes.  For the baseline cases,
nped=0.71<ne>, n0=1.1<ne>, nsep=0.3<ne>, an0=1, an1=0.5, aT0=1, aT1=2.

In the pedestal region, the parallel current is taken to be equal to the bootstrap current, as
calculated using the Sauter collisional model [15].  In the core, where details of the current are

† 

ne (y) = nsep + an 0{tanh[2(1- Ymid ) /D]- tanh[2(Y - Ymid ) /D]} + an1[1- (Y /Yped )an1 ]an2

† 

T(y) = Tsep + aT 0{tanh[2(1- Ymid ) /D]- tanh[2(Y - Ymid ) /D]} + aT1[1- (Y /Yped )aT 1 ]aT 2



relatively unimportant, the profile is taken to have a simple polynomial form, with coefficients
chosen to give a central q0=1.05, and a total Ip as in Table 1.

A number of simplifications are made to simplify the equilibrium construction process, including
up-down symmetry (while matching the given separatrix elongation and triangularity), and lack
of true X-points.

II.b. Ideal MHD Pedestal Stability

To characterize the pedestal stability constraints, the pedestal width (D) is varied, and at each
value of D, the pedestal temperature is increased incrementally (with the bootstrap current
calculated self-consistently) until stability boundaries are crossed.  Sample model ITER
equilibrium profiles near the stability boundary at a pedestal width D/a~0.03 are shown in Fig. 1.

Figure 1: Equilibrium profiles for a sample ITER case with pedestal width of D/a~0.03, and pedestal temperature
Tped~5keV.

The intermediate n (n>~5) MHD code ELITE [16,13] is used in the pedestal stability
calculations.  ELITE has been successfully benchmarked against the GATO [17] and MISHKA
[18] codes, and allows efficient calculation of the pedestal stability bounds, and the growth rates
and mode structures of the limiting instabilities [16,13].   A sampling of wavelengths,
n=8,10,15,20,30, are studied, over the range expected to be most unstable.  A finite growth rate
threshold (g/wA>0.01) is used as a threshold for “instability,” eliminating slow growing modes
unlikely to trigger ELMs.  The results presented in this report required the production of more
than 1000 high resolution 2D equilibria, and more than 5000 intermediate-n MHD stability
calculations.

The results of these calculations of intermediate-n ideal stability bounds on Tped (at fixed nped) as
a function of the pedestal width are given for each machine in Fig. 2.  Note that at narrow
pedestal widths, relatively high n modes are the most unstable for all 3 cases, while at wider



pedestal widths, high n modes become second stable in ITER and FIRE, and modes in the range
n~10-20 are most unstable.  The maximum stable pedestal temperature is found to be a
monotonically increasing function of pedestal width, but the dependence is sub-linear,
particularly at small widths, as can be seen most clearly in Fig. 2c.

Figure 2: Maximum stable pedestal temperature for model equilibria of each device, as a function of the pedestal
width.  Stability boundaries for toroidal mode numbers n=10,15,20,30 are shown.

Because the candidate devices have different values of the pedestal density and magnetic field, it
is useful to compare the pedestal stability constraints on normalized quantities. Figure 3 shows
the pedestal stability constraints imposed by the most unstable of the studied wavelengths, in
terms of the normalized pedestal b (bNped=bpedI/aB), the pedestal b (bped), and the MHD alpha
parameter at the pedestal center.  The maximum stable bNped is similar at narrow pedestals for the
three cases, but is higher for FIRE and ITER for wide pedestals, where high n modes are second
stable in the more strongly shaped FIRE and ITER equilibria.  Ignitor has the largest value of
I/aB (Ignitor 1.86, ITER 1.42, FIRE 1.29) and therefore has slightly higher bped at a given D/a.
The apparent trend is that the pedestal beta limits, as a function of D/a are remarkably similar for
the three devices.  Note that the maximum stable a value is not a constant, but rather decreases
strongly with increasing pedestal width.  This is because finite-n modes are sensitive to non-local
equilibrium changes across the pedestal and not just the steepest local gradient, and also because
the magnetic shear changes with pedestal width. Note also that the a value plotted in Figure 3c is
the generalized a, which differs from the cylindrical value.



Figure 3: Comparison of pedestal stability limits for model equilibria of the three candidated devices, given in terms
of (a) normalized pedestal beta, (b) pedestal beta, and (c) the MHD alpha parameter at the pedestal center; plotted

against normalized pedestal width.  The stability limit imposed by the most unstable of the studied n’s
(n=8,10,15,20,30) is shown.

II.c. Variation with triangularity and density

The pedestal stability results above employ equilibria with the standard set of equilibrium
parameters given in Table 1.  It is also of interest to study how these boundaries change with
changes in the equilibria, particularly changes in parameters such as triangularity and density that
are expected to be at least partially controllable in experiments.

The triangularity of the plasma cross-section has been found both theoretically and
experimentally to significantly impact the pedestal [see e.g. Refs. 1-3,9,11].  In particular, higher
triangularity generally improves the effective average curvature and increases pedestal beta
limits at a given pedestal width.  At high triangularity the peeling and ballooning branches of the
instability begin to become decoupled, and second stability access can become possible for high
n modes [14,13].

Figure 4a shows the results of a study in which the triangularity of the last closed flux surface
(da) is varied, while all other parameters in Table 1, and the pedestal width (5% of the poloidal
flux, or D /a~0.03) are held fixed.  The pedestal stability limits increase strongly with
triangularity, and begin to roll off around d~0.5.  However, it should be noted that in these cases,
the higher moments of the plasma shape, eg the squareness, are set to zero.  It has been found in
previous studies that stability limits continue to increase at very high values of d if an optimized
squareness is used [19].

Figure 4: Variation in pedestal stability limits with triangularity and density for FIRE and ITER model equilibria.  A
fixed pedestal width of 5% of the poloidal flux (D/a~0.03) is used and all parameters are from Table 1 except the

indicated one which is varied.

Density also can impact pedestal stability limits.  Because the current and resulting magnetic
shear play an important role in determining pedestal stability limits, these limits have separate
dependencies on density and temperature, not just the pressure [13].  Trading off density and



temperature at a given pressure alters the collisionality and the local value of the bootstrap
current.  A study of the variation of pedestal stability limits with density is shown in Figure 4b.
Here the average density is varied with the pedestal density fixed at 0.71 of the average value,
and the separatrix density fixed at 0.3 of the average.  Lower density results in increased
bootstrap current, lower shear, increased second stability access, and higher stability limits.

II.d. Unstable Mode Structure

The linear mode structure of the most unstable mode is expected to be related to the size of the
resulting ELM, though nonlinear dynamics and scrape-off-layer physics likely play a significant
role [see e.g., 7,10-14].

The mode structures of the limiting instabilities in the model equilibria for all three devices have
a characteristic peeling-ballooning mode structure, localized to the outboard midplane, and
extending radially somewhat beyond the pedestal.  Lower n modes tend to have broader radial
extent than higher n’s, though the difference can be relatively small for a given equilibrium.
Note however that, for the ITER and FIRE cases, lower n’s are most unstable when the pedestal
is wide, so there exists a clear correlation between the wavenumber of the most unstable mode
and its radial extent (which is wider for wider pedestals).  Example mode structures are given in
Figure 5.

Figure 5: Comparison of radial eigenmode structures for (a) n=8 (b) n=20 in ITER model equilibrium with
D/a=0.03, Tped=6.2 keV.  (c) 2D structure of an n=20 peeling-ballooning mode in FIRE model equilibrium with

D/a=0.03, Tped=5 keV.

III. Non-Ideal MHD Effects

A host of non-ideal and rotational physics can potentially modify the results of the previous
section, including toroidal flow shear, finite resistivity, finite Larmor radius effects, kinetic
resonance effects, and ExB shear.



Diamagnetic stabilization of short to intermediate wavelength instabilities has been identified as
a potentially important piece of non-ideal physics in the pedestal regime [see e.g. Refs. 20-24].
A full treatment of diamagnetic effects requires a detailed kinetic or two-fluid formalism beyond
the scope of this study.  However, simple models can be used to estimate the impact of
diamagnetic stabilization on the results from the previous section.  The classic approach is to
compare the calculated ideal MHD growth rate to the ion diamagnetic frequency, employing
gMHD>w*pi/2 as the modified threshold for instability in the presence of diamagnetic stabilization
[20,21]. This approach requires selecting a characteristic local value of w*pi, a quantity which

varies rapidly over the pedestal.  Here, we use the maximum value of 

† 

w*pi ≡
cn
eni

∂pi

∂y
in the

pedestal region divided by 

† 

2 .  Results obtained using this simple local model of diamagnetic
stabilization are shown in Figure 6. [Note that compressionless values of gMHD are used here.
These results are approximate and are intended only to provide an indication of the impact of
diamagnetic effects.] One limitation of this local model is that it assumes a constant level of
diamagnetic stabilization over the full radial extent of the mode, which can extend beyond the
pedestal.   For narrow pedestals this can lead to a significant overestimate of the stabilizing
effect.  A modification suggested by B. Rogers and J. Drake [25] allows a smooth transition from
the regime where the pedestal is much wider than the mode to the regime in which it is much
narrower than the mode.  The w*pi/2 term given above is multiplied by a factor of 1/(1+1/kqLp).
Here kq is determined on the outer midplane, and Lp is taken to be approximately the pedestal
half width.  Results with this modified diamagnetic stabilization model are also given in Figure
6.  [Stability limits at narrow widths in the presence of the diamagnetic stabilization are more
challenging to calculate, and are not presented in the figure, but this should not be taken as an
indication that no stability limit exists for these cases.]

Figure 6: Stability constraints (from n=8,10,15,20,30 modes) on the normalized pedestal beta as a function of
pedestal width, including results with the local gMHD>w*pi/2 model of diamagnetic stabilization, and with the

modified model.

IV. Summary of Pedestal Stability Study

A set of model equilibria with varying pedestal width (D) and height have been constructed for
each device, and constraints imposed by intermediate n=8-30 MHD modes have been assessed
using the ELITE code. The calculated stability bounds on bped vs D/a are similar between the
machines.  The maximum stable pedestal height (bped) is a strong function of the width, though
notably sub-linear particularly at narrow widths.  The maximum stable height is a strong function



of triangularity, and a weaker function of density.  Intermediate to high n modes are found to be
the limiting instability, and calculated mode structures, which are expected to be related to the
ELM depth, extend inward somewhat beyond the pedestal.  Diamagnetic effects on the stability
bounds are assessed with a local model (g>w*pi/2), and with a modified local model which takes
into account the finite ratio of mode width to pedestal width.  Diamagnetic effects, as modeled
by these simple models, are found to significantly increase the ideal MHD bounds and to shift
the limiting mode to longer wavelengths.

V. Implications

V.a. Connection to Core Transport Models and Empirical Pedestal Scaling

Core transport modeling is discussed in the transport section of this report, and only the
connection between core transport and pedestal conditions will be briefly considered here.

Previous study using the GLF23 transport model has found that pedestal b values in the vicinity
of 0.5-1% are required for good performance.  More specifically, GLF23 simulations predict a
value of bNped~0.43 is required for Q=10 at Paux=20 MW on ITER, and a value of bNped~0.60 is
required for Q=10 at Paux=10 MW on FIRE [26].  As shown in Figure 3a, these pedestal heights
are found to be ideal MHD stable to the studied range of modes (n=8-30) for pedestal widths of
D/a>~0.025.  Pedestal widths of this size fall within the observed range on several machines,
however, they tend to be toward the upper end of the range.

It should also be noted that optimization of the plasma cross-section shape and density can
significantly increase the pedestal stability constraints given in Figure 3.  Furthermore, the
simple models suggest that diamagnetic stabilization will significantly increase the pedestal
stability limits, as shown in Figure 6, allowing the required pedestal heights at significantly
narrower widths.

However, it is not clear that the pedestal width should scale linearly with a.  A number of studies
of empirical pedestal width scaling have been carried out [see e.g. 1-3,27], with varying results,
but often a width scaling with a low power of the ion poloidal gyroradius or the poloidal beta, or
with the neutral particle penetration depth (for the density width), is found. A number of factors
complicate the process of arriving at a useful empirical pedestal scaling.  First, few machines
directly measure the pedestal width accurately, and therefore width scalings are often attempted
by dividing the observed pedestal height by some measure of the “ideal MHD critical gradient.”
It should be clear from the preceding sections that there is in general no ideal MHD critical
gradient which is independent of the pedestal width. Also, the scaling of ideal MHD limits can
be complex, due to the role of the bootstrap current and the separate dependencies on density and
temperature that it introduces, and due to finite-n modes having finite radial width and sensitivity
to non-local features of the equilibrium.  Hence, width scalings derived by dividing observed
pedestal heights by fixed “ideal MHD critical gradients” are at best very rough approximations.
Additionally, the observed scalings in which the pedestal width is observed to increase with
factors such as gyroradius or bp, which increase with pedestal height, must be studied carefully.
If indeed the pedestal is constrained by MHD stability, the pedestal height is expected to increase
with pedestal width (and vice versa), and therefore scalings that describe the width increasing



with height may need to be quite precise in order to provide information on the actual physics
limiting the width.

On existing machines, a wide range of pedestal conditions are generally achievable.  Values of
bNped>~0.7 have been achieved on multiple machines [1-3,28].  It therefore seems reasonable to
expect that the burning plasma candidates will be able to achieve the required range of pedestal
heights, though this may require significant work on pedestal optimization experiments.

V.b. ELM Size

Achieving high pedestals in the burning plasma candidate devices is significantly complicated by
the simultaneous requirement of small ELMs.  In present machines, it is often observed that large
ELMs are found at the highest pedestal regimes [3,7,28-30].

In the stability study, both ITER and FIRE are found to be near the threshold for significant
second stability access in the pedestal.  This suggests that, via small modifications to the shape or
other variables, that the machines could move in and out of the second stable pedestal regime,
and explore the resulting expected tradeoffs between high pedestal and larger ELMs.

The most unstable mode structures found in the stability study extend somewhat beyond the
pedestal region, similar to results of analysis on present machines.  The mode structures are
wider at large pedestal widths and slightly wider when longer wavelengths are most unstable.
This suggests somewhat larger ELMs for wide pedestal, strongly second stable cases, but the
details are highly uncertain.

It has been observed that ELM size is reduced at higher densities [29,30].  Whether this physics
is tied to the increase in pedestal collisionality, increased Greenwald density fraction, or
increased parallel transport time in the scrape-off-layer, remains an active area of study.  The
burning plasma candidates likely will need to operate at low collisionality at the top of the
pedestal, but will have high collisionality/long parallel transport time in the SOL, and may
operate at high Greenwald density fraction.

The stability study above, as well as observations on existing devices, suggests that shaping
flexibility, and the ability to vary the density, are desirable in order to allow optimization of the
pedestal and ELMs.  In particular, the benefits of operating in first versus second stable pedestal
regimes could be explored by varying the shape in a flexible, strongly shaped device.  Also, the
benefits of operating at low Greenwald fraction (predicted higher pedestals) could be contrasted
with possible benefits (smaller ELMs, divertor) of high density operation.  An ability to vary the
current in the pedestal region, for example via off-axis current drive, may also aid in controlling
ELM and pedestal behavior.

In conclusion, pedestal physics, particularly the physics setting the pedestal width, is not fully
understood and progress is needed to allow detailed quantitative predictions of pedestal height
and ELM characteristics.  However, studies have been undertaken using available tools to
evaluate MHD stability constraints on the pedestals of model equilibria as a feasibility check on
the pedestal heights required by core transport models for good performance, and to provide



input for models of ELMs.  The results of the stability study, particularly if models of
diamagnetic stabilization are considered, do not suggest that the required pedestal heights are
infeasible.  They suggest that ELM behavior may be similar to that observed on present devices,
and that effort may be needed to develop high pedestal, small (or no) ELM regimes during the
early operation phases of the proposed devices.
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