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abstract 

 
We provide a summary of the Porcelli sawtooth model and compare the ideal term in that 
formulation with recent evaluations.  The implementation in TSC is described.  We give 
results for the application of this model, in combination with several leading transport 
models, as part of an integrated simulation of the three proposed burning plasma experiments: 
FIRE, ITER, and Ignitor.  Both complete and partial reconnection is considered.  
 
Introduction: 
One of the major uncertainties in the physics design of a burning plasma experiment is the 
behavior of the internal m=1 mode.   The toroidal current in an inductively driven tokamak 
with low enough edge safety factor (q95) will normally continue to peak until a relaxation 
oscillation occurs, the so-called sawtooth crash.  This flattens the central temperature and 
density, and redistributes the current and poloidal flux to some extent.  The crash results in an 
outward transport of energy that will affect the fusion burn to some degree.  The sawtooth 
crash could also couple to other plasma modes, for example the tearing modes and the edge 
localized modes, and it can interact with the energetic alpha particles to cause particle loss.  
We have undertaken an evaluation of the effects of the sawtooth in three candidate burning 
plasma experiments, ITER, FIRE, and Ignitor. 
 
The Porcelli Model: 
A comprehensive model of the sawtooth trigger and relaxation oscillation has been developed 
by Porcelli et al [1].  We adopt the notation used in that paper.  The macroscopic drive has 
with it associated an effective potential energy functional defined by:  
 

core fastW W Wδ δ δ= +  
 
where core MHD KOW W Wδ δ δ= + .   The potential energy is normalized according to 
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with s being the magnetic shear, ξ   the radial displacement of the magnetic axis and ε  the 
inverse aspect ratio. The subscript 1 denotes values at the q=1 surface.  We drop the hat 
notation in the following discussion. 
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The ideal MHD potential energy term, δWMHD, includes the effects of toroidicity and of 
plasma shaping in a free boundary plasma [2,3].  Since the Porcelli form for this term has 
been the subject of considerable debate and controversy, we discuss it and the justification for 
it here.  We first note that it has now been demonstrated that the analytical [2,3] and 
numerical [3,4,5], evaluation of this term depends sensitively on the plasma boundary 
condition, and that calculations that assume a perfectly conducting wall on the surface of the 
plasma will give a misleadingly stable result [7-11]. 
 
 
The Ideal Term: 
We consider the Porcelli approximation to the ideal term [1]: 
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Here, ( )2
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8 ( )p pB p p rβ π  = −  , with the brackets denoting volume averaging within the 

q=1 surface, ( )10.3 1 5 3pc r aβ = − , 01q q∆ = − , and κ1 is the plasma ellipticity at the q=1 
surface.  The first term in brackets in Eq. (i) is the Bussac result for parabolic profiles 
modified by removing the stabilizing effect of the wall.  This reflects the fact that for circular 
cross section plasmas without a wall on the surface, the marginal βp decreases monotonically 
with increasing q=1 radius [3]. 
 
The second term in Eq. (i) reflects the destabilizing effect of cross section shaping, and in 
particular how this effect decreases the critical βp1 as q0 decreases from 1.  To see this, we 
solve Eq. (i) for the critical βp1 vs r1/a for typical profiles with κ1 ~ 1.4, ε  ~ 0.275, and a near 
parabolic q-profile with qedge > 3 so that ∆q ~ 2.5 (r1/a)2 .  Solving Eq. (i) for δW=0  yields: 
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Figure 1:  Critical β p 
vs ∆q for Eq. (ii) and 
for several numerical 
equilibrium from 
PEST with differing 
pressure profiles and 
both with and without 
a conducting wall at 
the boundary of the 
plasma.  Beta values 
above the curves are 
unstable to ideal 
modes. 
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We plot the critical βp1 vs ∆q from Eq. (ii) and compare the result with recent numerical 
calculations [4] of βp vs ∆q using PEST with the correct free-boundary conditions.  For the 
purpose of displaying these results together, we note that for the profiles of interest, we have 
βp ~ 2βp1.  Eq. (ii) is seen to be qualitatively correct for a plasma without a wall, although the 
exact results are profile dependent. 
 
The Kinetic Terms: 
The Porcelli model also includes the stabilizing effect of thermal trapped ions, δWKO [12,13], 
and kinetic effects related to high energy particles (fusion alphas, ICRF accelerated ions and 
beam ions), δWfast [14,15].  We have compared the latter term from [1] with a more exact 
calculation using NOVA-K and a computed alpha-particle slowing down distribution 
function from TRANSP.  We find that the simplified expression in [1] agrees qualitatively 
with the more exact result from NOVA-K, and also quantitatively within a factor of √2.  This 
is consistent with other comparisons of this term [15,16]. 
 
The Trigger: 
The Porcelli sawtooth model invokes an event if one of the following 3 criteria are met.  The 
first is the condition that for the trapped-ion processional drift orbits to be effective in 
stabilizing the internal kink mode, the high-energy trapped particles must complete many 
orbits within a characteristic magnetic perturbation time.  This condition is violated when 
 

( )1core Dh AWδ ω τ− >
)

 
 

The second condition is that the diamagnetic rotation be sufficient to stabilize the mode.  
Thus, the sawtooth will be triggered when 
 

( )*0.5 2i AWδ ω τ− >
)

 
 

If the energy drive is sufficiently weak that the mode is stable according to these 2 criteria, 
the m=1 mode structure changes its nature from a global internal kink to a drift-tearing mode 
localized near the q=1 surface.  This is normally stable because of kinetic layer effects, but 
the layer effects will be insufficient when the normalized potential energy exceeds the 
normalized ion Larmor radius and rotation effects are sufficiently weak, i.e. when 
 

( )* *0.5 3i A iW and ρρ δ ω τ ω γ< − < <
))  

 
where γρ  is the characteristic growth rate of the internal kink mode in the ion-kinetic regime.  
The second inequality in (3) can also be translated into a condition that the magnetic shear at 
the q=1 surface exceed a critical value for instability [1]. 
 
The Sawtooth Crash: 
When the sawtooth is predicted to be triggered by one or more of these 3 criteria, we modify 
the transport coefficients in two ways.  The value of the toroidal flux at the inversion surface, 
Φ 1, is calculated as  
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For the duration of the sawtooth crash time τCRASH, we define the thermal conductivity and 
the hyper-resistivity to be: χ=r12/τCRASH and λ = λ0 B0

2 r1
4/τCRASH.  A value of λ0 = 0.1 

effectively causes a Kadomtsev reconnection to occur [17] in the time t = τCRASH, which we 
took to be 10 ms in these runs.  By lowering λ0 to 0.001, we can model an incomplete 
reconnection where the temperature profile flattens but the current and flux do not fully 
reconnect. 
 
Integrated Modeling: 
It has previously been reported that the Porcelli sawtooth model described here has been 
implemented in the PRETOR code and compared in detail with JET experiments in several 
different regimes with different levels of NBI power.  It was reported that in every case 
analyzed, the simulated sawtooth periods are within 20% of the experimentally observed 
periods, even as the period varies by more than a factor of 5 during a given shot [18]. 
We have implemented this same Porcelli sawtooth model in the Tokamak Simulation Code 
(TSC)[19] and have investigated its consequences on transport and ignition in the three 
proposed burning plasma experiments.   
 
Core Transport and Boundary Conditions: 
There are several transport models that have been developed for use in predicting the profiles 
and performance in a burning plasma.  We have implemented three of the leading models in 
TSC.  The three models are (A) the Multi-mode model [20], (B) the Gyro-Landau Fluid 
model GLF23 [21], and (C) the “standard TSC” Coppi-Tang model [19].  These core 
transport models must be supplemented by boundary and edge models.   
 
The H-mode models (A) and (B) are only applied in the central region 0 < Φ  < 0.75, where Φ  
is the normalized toroidal magnetic flux that is zero at the magnetic axis and unity at the 
plasma/vacuum separatrix.  In the edge region 0.75 < Φ  < 1.0, we use a transport model χ i = 
χe = C/ne , where ne is the local electron density and C is a constant chosen so as to make the 
pressure gradient in this region below the infinite-n ballooning mode stability criteria.  This 
leads to electron and ion temperatures at the top of the pedestal, Φ  = 0.75, of 3-5 KeV. 
 
The density profile is not advanced in time in these simulations, but is rather a prescribed 
function of normalized poloidal flux, ψ, and time, t.  We take the electron density during the 
current flattop to be ne(ψ,t) = n0(t) × [( 1. - ψ β )α + redge], with α=0.3, β=2.25, n0 = 4.0 × 1020 
and redge = 0.3 for FIRE, with α=0.25, β=8.0, n0 = 0.75 × 1020 and redge = 0.4 for ITER, and 
with α=1.2, β=1.2, n0 = 9.0 × 1020 and redge = 0.1 for Ignitor. 
 
Discharge Simulations of FIRE: 
We have developed a full 1 1/2D TSC simulation of a complete FIRE discharge including 
current rampup, flattop, burn, and current rampdown for each of the three transport models, 
and utilizing the Porcelli sawtooth model with both complete and incomplete reconnection. 
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Figure 2: The complete reconnection Porcelli model. The top three frames show δW  (solid) and the 
critical value (dashed) for the 3 transport models for the 3 criteria corresponding to Eqns. (1)-(3).  During 
the flattop, for the simulation using model (A), the sawtooth is triggered by criteria 3, for model (B) it is 
criteria 2, and for model (C) it i s criteria 1.  The 4th row shows the safety factor on axis for each of the 3 
models.  The next row shows the total stored energy (W) (dashed line) and the instantaneous α -power 
(solid line), and the final row the central electron temperature. 



6/11 

(A) MMM95

- 
δW

 -
- 

E
q.

(1
)

-0.01

0.01

0.03

(B) GLF23 (C) Coppi-Tang

− 
δW

--
E

q.
(2

)

-0.05

-0.03

-0.01

0.01

time (sec)

10 15 20 25

- 
δW

 -
- 

E
q.

(3
)

-0.07

-0.05

-0.03

-0.01

10 15 20 25 10 15 20 25

q-
ax

is

0.6

0.8

1.0

1.2

α
-p

ow
er

 (M
W

) a
nd

st
or

ed
 E

ne
rg

y 
(M

J)

0

10

20

30

40

time (sec)

10 15 20 25

T
e(

0)

0

5000

10000

15000

20000

time (sec)

10 15 20 25

time (sec)

10 15 20 25

 
Figure 3:  Three FIRE simulations with the three different transport models (same as Figure 2) but for an 
incomplete reconnection model.  The time averaged results are very similar, but the sawtooth period is 
reduced by about a factor of 2. 
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Figure 4:  Electron 
temperature and safety-
factor profiles just before 
(solid) and after (dotted) a 
sawtooth crash for the (A) 
MMM95, (B) GLF23, and (C) 
Coppi-Tang transport 
simulations corresponding to 
the complete reconnection 
simulations of Figure 2. 

 
We utilize a feedback 
system on the ICRH 
power designed to keep 
the total stored energy W 
constant at 34.5 MJ of 
total stored energy.   We 
also include a uniform 
distribution of 3% 
Beryllium impurity, 
which together with the 
He buildup (assuming τP = 
5 sec), leads to a value of 
ZEFF ~ 1.4 during the 
flattop. The constant in 
the edge region is chosen as C=2.×1019 for H-mode models (A) and (B) .  For transport model 
(C), we choose coefficients (a121,a122) = (0.10, 0.42) and impose a separatrix temperature at Φ  
= 1.00 of  Te = Ti = 400 eV. 
 
The results of these simulations are presented in Figures 2-4. Figure 2 shows the results of 
using the complete reconnection Porcelli model together with each of the 3 transport model.  
Each of the 3 transport models leads to a different behavior of the sawtooth as shown in these 
figures.  The model A (MMM95) has sawteeth every ~ 5 seconds triggered by the criteria in 
Eq. (3), the model B (GLF23) has sawteeth every ~ 7 seconds, triggered by the criteria in Eq. 
(2).  In model C (Coppi-Tang), the sawteeth occur much more frequently, about every 0.5-
second, and are triggered by the criteria in Eq. (1).  We expect the H-mode models A and B 
to be more representative of what will happen in the actual experiment, but have included 
model C for contrast. 
 
The electron temperature and safety factor profiles just before and after the last crash for 
these runs are shown in Figure 4.  The instantaneous alpha power production and total stored 
energy stay relatively constant in each of these runs, as shown in the bottom row of Figure 2.  
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When these runs are repeated but using the incomplete reconnection model (λ0 =0.001), we 
find very similar results 
(see Figure 3), with the 
primary difference being 
that the sawtooth 
frequency increases (2 
sec, 3.5 sec, 0.2 sec) and 
the excursion in q0 is less 
[(.75,.90), (.67,90), 
(.86,.89)], but the 
performance, stored 
energy, alpha power, and 
Q value are essentially 
unchanged.  This follows 
from the fact that the 
sawtooth period is long 
compared to the energy 
confinement time, and 
the plasma is at a 
sufficiently high 
temperature that even 
when the central 
temperature is 
redistributed, the central 
region of the plasma is 
still near the 10keV peak 
in the fusion power 
production cross section. 
 
Discharge Simulations 
of ITER: 
For the ITER simulations 
we use the Gyro-Landau 
Fluid model GLF23 [21] 
, referred to above as 
model (B). We utilize a 
feedback system on the 
ICRH power designed to 
keep the total stored 
energy W constant at 320 
MJ of total stored energy.    
We also include a 
uniform distribution of 
2% Beryllium and 0.12% 
Argon impurities, which together 
with the He buildup (assuming τP 
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Figure 5:  ITER simulations using the GLF23 transport model 
and both the complete and incomplete reconnection models. 
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= 18.5 sec), leads to a value of ZEFF ~ 1.65 during the flattop. The constant in the edge region 
is chosen as C=2.5×1019.     
 
The results of two simulations are shown in figure 5, one using complete reconnection and 
the other with incomplete reconnection.  The sawteeth are predominantly triggered by the 
criteria in Equation (1) for 
the ITER simulations. Note 
that the sawtooth period is 
about every 50 sec during the 
flattop for the complete 
reconnection, and 2-3 times 
that frequent for the 
incomplete reconnection.  As 
in the FIRE simulations, both 
the alpha power and stored 
energy are essentially 
independent of the sawtooth 
period, since the period is 
always longer than the 
energy confinement time and 
the central temperature is so 
high. 
 
 
Discharge Simulations of 
Ignitor: 
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=1.2 in the radiation and the 
resistivity calculations 
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introducing an impurity. We 
apply 5 MW of external 
ICRH power. A separatrix 
temperature at Φ  = 1.00 of  
Te = Ti = 10 eV is imposed. 
 
We see that the sawtooth is 
triggered by the criteria in 
Equation (2) in these Ignitor 
simulations.  The period is 
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Figure 6:  Ignitor simulation using the Coppi/Tang transport model and 
both the complete and incomplete reconnection Porcelli model 



10/11 

about 1 sec in the complete reconnection simulations and 600 ms in the incomplete 
reconnection simulation.  The sawtooth does have a substantial effect on the neutron yield 
since it is comparable to the energy confinement time, and also because the central 
temperature is less than the temperature where the DT reaction rate takes on a maximum.  
Thus, the redistribution of the energy during the sawtooth crash results in a lowering of the 
instantaneous neutron production. 
 
Future Work  
The nonlinear M3D code is also being used to investigate the assumptions made in the 
Porcelli model and to evaluate the consequences of the sawtooth crash in burning plasma 
devices, including the effects on the high-energy Helium population, the formation of 
stochastic regions outside the q=1 surface, and the coupling of the m=1 mode to other modes.  
Results of this study will be reported separately.  
 
Summary and Conclusions: 
Each of the three burning plasma experiment under consideration is primarily inductively 
driven and is expected to exhibit sawtooth oscillations.  Fast particle stabilization is an 
important effect, and leads to expansion of the q=1 surface until the crash occurs.  There is 
some uncertainty as to whether the crash will result in a complete Kadomtsev reconnection, 
or a partial reconnection, and so we have evaluated the effects of both.  
 
We find that in both FIRE and in ITER, the sawtooth leads to periodic oscillations on a time 
that is considerably longer than the energy confinement time, τSAW >> τE , and that the 
temperature at the q=1 surface is sufficiently high that the sawteeth oscillations have 
negligible effect on both the stored energy and the rate of neutron production.  The 
incomplete reconnection sawteeth have a period about half that of the complete reconnection, 
but still long compared to τE . 
 
In Ignitor, we find that the sawtooth period is comparable to the energy confinement time, 
and that the temperature at the q=1 surface is sufficiently low that the neutron production rate 
will oscillate substantially along with the sawtooth oscillation.  However, this is not 
considered to be a serious flaw in the device, and it may, in fact, be possible to operate in a 
regime with higher temperature and less frequent sawteeth so that this is not an issue. 
 
We note that the results presented here are somewhat sensitive to the choice of the transport 
model chosen, and thus cannot be taken as definitive.  However, the GLF23 and MMM95 do 
give similar results for the sawtooth behavior in the (H-mode) FIRE simulations, and the 
Coppi-Tang model has given good results when compared in detail with ohmic discharges in 
TFTR [19].  However, more calibration of these models in existing experiments is clearly 
needed. 
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