MHD STABILITY ISSUES IN A BURNING PLASMA

by E.J. STRAIT

Presented at the University Fusion Association Workshop on Burning Plasma Science Austin, Texas

December 11–13, 2000

PRESENT UNDERSTANDING OF MHD STABILITY LIMITS IS SUFFICIENT TO DESIGN A BURNING PLASMA EXPERIMENT

- Ideal MHD stability limits are well understood and predictable
 - Upper limit to plasma stability
 - Credible foundation for design of next-step devices
- Non-ideal effects introduce greater uncertainty
 - Resistivity, finite Larmor radius, energetic ions, ...
- Resistive instabilities are less predictable but may be avoidable
 - Neoclassical tearing modes can be avoided transiently by profile modification
 - Recent experiments have suppressed NTMs with localized current drive
- Steady operation very near stability limits has been demonstrated
- Burning plasma experiments go beyond present experience with MHD stability, and present new scientific challenges

FULL STABILIZATION OF NTM OBTAINED WITH MODEST ECH POWER

Resonance moved 2 cm outward No ECCD Full Stabilization

- After reaching the seed size, the stabilization is rapid because the mode growth rate is negative
- $\beta_{\mbox{N}}$ increases during stabilized phase
- Even in presence of large sawteeth the mode doesn't grow

STEADY STATE HIGH PERFORMANCE DISCHARGES CAN BE ACHIEVED USING UNDERSTANDING OF STABILITY LIMITS AND DISCHARGE CONTROL

- β controlled to remain ~20% below predicted RWM limit
 - β also kept 5%
 below experimental
 2/1 NTM β limit
- Discharge continued in steady state until beam termination
- No sawteeth

319-00 ју

MSE shows J(r) profile has reached resistive equilibrium with q₀ ~1.05

SAN DIEGO

WHAT DISTINGUISHES A BURNING PLASMA FROM EXISTING EXPERIMENTS?

- Self-heating
 - Less external control over profiles (p, j, Ω)
- Energetic particle effects
 - Large isotropic population of fast ions
- New ranges of dimensionless parameters
 - $\rho_i^* = \rho_i / a \sim T^{1/2} / aB$
 - S = $\tau_A / \tau_R \sim a B T^{3/2} / n^{1/2} Z_{eff}$
 - $v^* = v_i / \varepsilon \omega_{bi} \sim nqRZ_{eff} / \varepsilon^{3/2}T^2$

	DIII-D	C-MOD	JT-60U	JET	FIRE	IGNITOR	ARIES-RS	ITER-FEAT	ITER-FDR
aB (m-T)	1.3	1.7	3.5	4.3	5.3	6.1	10	11	16

EXISTING EXPERIMENTS ARE SUFFICIENT TO INVESTIGATE MANY ISSUES OF MHD STABILITY

- Ideal MHD stability limits
 - Profile dependence
 - Shape dependence
 - Aspect ratio dependence
- Feedback stabilization of RWM
- ECCD stabilization of NTM
- Edge-driven instabilities
 - Identification of instability
 - Dependence on bootstrap current
- Stability with non-inductively driven current profiles

BURNING PLASMA-SIZE EXPERIMENTS (WITHOUT ALPHA HEATING) ARE REQUIRED TO INVESTIGATE SCALING OF MHD STABILITY PHYSICS

- NTM beta limit scaling
 - Threshold island size decreases with decreasing ρ_i^*
 - Seed island size decreases with increasing S
- Edge-driven instabilities
 - Edge gradients determine stability limit
 - Pedestal width determines coupling to core
 - Scaling of edge parameters is not well understood
- Resistive wall mode stability
 - Rotation frequency required for stabilization may increase with S ($\Omega \tau_A \sim 0.05$)
- Runaway avalanche during disruption
 - Number of e-foldings increases with plasma current
 - Runaway electron current multiplication
 - \bigstar \gtrsim 10² at Ip = 2 MA
 - \bigstar \gtrsim 10⁶ at Ip = 5 MA

NTM THRESHOLD SCALES LINEARLY WITH NORMALIZED ION LARMOR RADIUS

- But scaling of β_N/ρ_i^* with collisionality is not consistent between machines
 - Possible additional dependence on ρ_i^* or S
- $\beta_N \propto \rho_{i*}$ f(v) is consistent with polarization/inertial model of Wilson et al.

• Sawtooth-induced 3/2 NTM, ELMing H–mode

SAWTOOTH INDUCED SEED ISLANDS SCALE INVERSELY WITH MAGNETIC REYNOLD'S NUMBER

• Seed islands estimated from m/n = 3/2 Mirnov level upon excitation

 Best fit has w_{seed}/r ∝ S^{-0.46±0.05}, correl r = −0.74 consistent with dynamical coupling model of Hegna et al.

EDGE STABILITY AND ELM CHARACTER DEPEND CRITICALLY ON COLLISIONALITY

ELM SIZE CORRELATES WITH RADIAL WIDTH OF PREDICTED UNSTABLE INTERMEDIATE n KINK MODE

224-00/rs

A BURNING PLASMA (STRONG ALPHA HEATING) IS NEEDED TO INVESTIGATE KEY ISSUES OF MHD STABILITY

- Energetic particle interactions with MHD modes (sawteeth, fishbones, TAE, ballooning modes, etc.)
 - Stabilization or destabilization of MHD modes by alphas
 - Enhanced transport of alphas by MHD modes
- Self-heating ($P_{\alpha} >> P_{external} \Rightarrow Q \ge 10$)
 - Stability limits with pressure profiles determined by alpha heating
 - Plasma rotation with little or no external momentum input (RWM stability, mode locking, error field sensitivity)

 $Ω ~ ω^* ~ T/a^2B$?

- Steady-state operation ($\tau > \tau_{CR} \sim a^2 T^{3/2}/Z_{eff}$)
 - Stability limits with self-consistent current density and pressure profiles

STABILITY LIMIT DEPENDS STRONGLY ON THE FORM OF THE PRESSURE PROFILE

- DIII–D high $p_0/\langle p \rangle \sim$ 6.0 (L–mode): $\beta_N \lesssim$ 2.5
 - Limited by fast n = 1 disruption
- TFTR high $p_0/\langle p \rangle \sim$ 6.0 (ERS–mode): $\beta_N \lesssim 2$
 - Limited by fast n = 1 disruption
- DIII–D low p₀/ $\langle p \rangle$ ~ 2.5 (H–mode): $\beta_N \lesssim 4$
 - No disruption limited by ELM-like activity from finite edge pressure gradients

ROTATION DECELERATES ABOVE THE NO-WALL β LIMIT (EVEN WITH LARGE TORQUE)

- Some issues of MHD stability require burning-plasma parameters to investigate
 - NTM beta limit scaling
 - Edge-driven instabilities
 - Resistive wall stabilization
 - Disruption scaling (runaway avalanche)
- Some key issues of MHD stability can only be addressed with strong alpha heating
 - Energetic alpha interactions with MHD modes
 - Stability with profiles determined by self-heating (t >> τ_E)
 - Stability with self-heating and relaxed current density profile (t >> τ_{CR})
- Many of the issues requiring a burning plasma are not purely MHD stability issues but issues of integration (transport, profile control, burn control, etc.)

INTEGRATION OF SEPARATE ELEMENTS MAY BE THE MOST IMPORTANT MISSION FOR A BURNING PLASMA EXPERIMENT

• Strong coupling of transport, heating, and stability leads to a more "selforganized" plasma than in a short-pulse, externally heated tokamak

-	Pressure profile	\rightarrow	Fusion rate	\rightarrow	Alpha heat deposition	\rightarrow	Thermal transport	\rightarrow	Pressure profile
-	Pressure profile	\rightarrow	Bootstrap current	\rightarrow	Current profile	\rightarrow	Thermal transport	\rightarrow	Pressure profile

- MHD instabilities can intervene in these loops:
 - $\begin{array}{ccc} & \mbox{Pressure, current density, and fast ion} & \rightarrow & \mbox{Instabilities} & \rightarrow & \mbox{Modification} \\ & \mbox{profiles} & & \mbox{of profiles} \end{array}$
- Investigation of such a complex, non-linear system represents a scientific challenge, and may yield some surprises

RECOMMENDATION: A "next step" burning plasma experiment is needed as the only way to address this challenge