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ABSTRACT

A variaty of plasma conditions covering three major concepts of next step burning plasma

experiment, ITER, FIRE and INGNITOR, are investigated against the stability of shear

Alfvén eigenmodes. Main concern for such modes is the possibility of in�icting enhanced

�-paricle losses to the �rst wall due to the instabilities driven by �-paricle pressure gradient.

JET plasma, where fusion alphas were generated in tritium experiments, is included in the

study for experimental validation of numerical predictions. High-n STability code HINST

is the main used numerical tool, which is capable to predict instabilities of low frequency

modes such as ballooning and Alfvén modes. HINST computes nonperturbative solutions of

Alfvén eigenmodes including such e�ects as ion �nite Larmor radius, orbit width, trapped

electrons etc.. We show that towards large tokamaks such as International Thermonuclear

Experimental Reactor (ITER) [Plasma Physics and Controlled Nuclear Fusion Research (In-

ternational Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239] the spectrum of unstable

AE modes, TAEs in particular, is shifted to medium-/high-n modes. TAEs are unstable

locally due to alphas pressure gradient in almost all the devices under the consideration.

However, NBI ions may produce strong stabilizing e�ect in plasmas like JET.

I. INTRODUCTION

Collective e�ects, such as instabilities driven by fast fusion products, alpha-particles, in

the burning plasma experiments are critical physics issues for (i) the sustainment of the

plasma parameters close to the ignition and (ii) for the heat �uxes to the �rst wall of the

reactor. Collective e�ects are known to result in energetic particle transport and losses in

the present day experiments. However, some plasma parameters of the burning plasmas can

not be achieved in present devices. There are speci�c physical issues, which only arise at

dimensionless plasma parameters relevant to next step burning plasma experiments (BP). In

addition alpha particles will have close to isotropic distribution function, which distinguish

BP from present day (PD) experiments. This a�ects the drive for known instabilities in the
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plasma, such as Alfvén eigenmodes, �sh-bones, and MHD macro-modes. Other important

issue relavant to BP is the interaction of alphas with multiple Alfvén instabilities, which are

di�cult to achieve in PDs. Even with continued progress in PD experiments extrapolation

to BP conditions may remain uncertain without BP experiment.

It is now generally acknowledged that Toroidal Alfvèn Eigenmodes [1�4] (TAE) destabi-

lized by fast ions could cause signi�cant di�culties for fusion ignition devices because of their

capacity to induce large losses of fast particles. Even though TAE may play some positive

role in burning tokamak-reactor plasma by means of providing a channel for fusion energy

transfer to the plasma ions and He ash removal, the main concern here is that TAE induced

losses could not only quench the ignition but also could lead to signi�cant damage to the

�rst wall. Previous low- to medium-n TAE instability studies indicated that fast particle

drive =! � n�h(�h=Lh), where n is the toroidal mode number, �h is the fast ion Larmor

radius, Lh is the fast ion pressure pro�le scale length, �h is the fast ion thermal to magnetic

pressure ratio. The fast particle drive reaches a maximum in n number near nq2�h=r ' 1

and decreases with increasing n for nq2�h=r > 1. On the other hand, the radiative damping

rate of TAE due to core ion �nite Larmor radius (FLR) e�ects increases with k?�i [5, 6] at

k?�i > 1, where k? is the characteristic perpendicular wavelength of TAE and �i is the bulk

ion Larmor radius calculated for ions with thermal velocity vT =
q
2T=m. Thus, it is ex-

pected that in large scale fusion devices such as International Thermonuclear Experimental

Reactor (ITER)[7], where �h;i=Lh � 1, medium- to high-n TAE modes can be potentially

unstable. It is therefore an urgent research need for the next step tokamak projects to study

the medium- to high-n TAE mode stability, which requires numerical calculations.

The physics requirements for such high-n TAE stability code are discussed in Ref.[6] and

have been incorporated into the HINST (high-n toroidal stability) code [8]. First, the code

is able to treat non-ideal e�ects non-perturbatively. There are indications that non-ideal

e�ects such as ion FLR e�ects and fast ion drive can strongly in�uence not only the growth

rate but also the eigenfrequency, the eigenmode structure, and the existence of some TAE

branches, like Resonant TAE (RTAE) [6] or Energetic Particle Modes (EPM) [9, 10]. Such
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modes may be related to experimentally observed Beam Driven Eigenmodes (BAE) [11�13].

Secondly, the HINST code is able to reproduce many other TAE branches, like kinetic TAE

(KTAE) and non-circularity induced TAE (NAE). Damping mechanisms including radiative,

collisional and resonant damping on plasma species are considered. Also, fast particle drive

is calculated with FLR e�ects and �nite radial drift orbit width (FOW) e�ects. Among

many AEs TAEs seems to be the most dangerous because of (i) their broad structure, which

depends on the safety factor pro�le and typically on the order of � �a, (ii) spatial pressure

gradient drive, and (iii) many modes can overlap radially and in the phase space.

II. MODEL OUTLINE

A. Fast particle TAE drive.

To understand the parametric dependence of the drive of TAE modes we make use of

simpli�ed expression for fast particles driven growth rate. Assume that fast particles have

slowing down distribution funcion. Then as was shown in Ref. [14] the following expression

for the growth rate can be obtained:
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where xA = vA=v�0. As we mentioned above characteristic toroidal mode numbers for a

given device are determined by fast particle orbit width:
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where we neglected terms with xA. This expression may overestimate the growth rate since

the FLR and FOW e�ects are not properly included. However the parametric dependence

seems to be correct.

B. Damping and critical ��particle pressure.

The damping rate dependence on plasma parameters is more complicated and includes

TAE energy radiation through the thermal ion FLR e�ects and the modi�cation of the

eigenfunction. It can be expressed analytically only in limited domain of plasma parameters

[14, 17], which will be used later in the paper for the comparison with numerical results.

Nevertheless reasonable estimate of the damping, as we will see below in Sec.IIIA, can be

obtained by including the dominant mechanism, thermal ion Landau damping. Analytical

formula for Landau damping of Maxwellian ions[4] is applicable in the large aspect ratio

limit for localized TAE solutions, such as core localized TAEs:

d
!

=
q2
p
��pc
2

x6i e
�x2

i (4)

where xi = vA=3vi '
q
2=9�pc, thermal ion plus electron beta is plasma core beta �pc, ion

thermal velocity is vi =
q
2Ti=mi, and we assumed xi � 1. Note, that this formula was

shown numerically[18] to describe well the Landau ion damping for core localized TAEs.

Comparing the drive, Eq.(3), and the damping, Eq.(4) one can obtain the formula for

the critical beta of hot particles:

��cr =
8

36�2
pc

 �R@ ln��
@r

!�1
e�2=9�pc : (5)

We can include some dependence for the stability boundary in T and �pc space as was

suggested by Herb.
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C. HINST kinetic nonperturbative numerical model

We use the nonperturbative fully kinetic code HINST[8]. HINST is able to reproduce

RTAE branches with arbitrary drive. It includes bulk plasma and fast particle Finite Larmor

Radius (FLR) e�ects. Radiative damping supported by trapped electron collisional e�ects

and ion Landau damping. It has been improved (to be reported elsewere) to account for �nite

orbit width e�ects, numerical equilibrium, and other kinetic e�ects, such as nonadiabatic

trapped electrons. Even though HINST is able to reproduce solutions with high toroidal n

numbers that have radially localized mode structures, it can be used for medium-n to low-n

modes in the local version of the HINST without resolving two-dimensional (2D) structure.

HINST was benchmarked against NOVA-K code for the case of strongly localized TAE

modes: core localized TAEs. It shows agreement of the growth rate calculations between two

codes within less than 20%. In section IIIA we compare HINST with analytical damping

rates.

III. HINST MODELING OF TAE INSTABILITY

In this section we explore the stability of TAE modes in four di�erent plasmas under the

consideration, basing on modelilng of the tokamak analyzing code TRANSP[19]. Figure 1

shows cross sections of these devices. There is noticeable di�erence in dimensions of these

tokamaks which parameters are shown in table I.

A. Fusion Ignition Research Experiment (FIRE)

We study this machine in more details. Figure shows comparison of TAE damping rates

produced by HINST code without fast particle drive with analytical damping rates. Ana-

lytical expression for the damping includes ion Landau and radiative damping[14, 17]. The

dependences are given as functions of minor radius variable
p
�, where � is the toroidal
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IGNITOR JETFIRE

ITER

Figure 1: Plasma poloidal cross sections with magnetic surfaces of four tokamaks under the in-

vestigation: FIRE, ITER, IGNITOR, and JET. Relative sizes of these machines are compared as

shown.

magnetic �eld �ux. Numerical damping rates include radiative damping supported by ther-

mal ion Landau and trapped electron collisional damping mechanisms. HINST code has

reasonable agreement with the analytical formula within 0:35 <
p
� < 0:5, where the ana-

lytical formula can be applied. Closer to the edge,
p
� > 0:5, trapped electron collisional

damping is the strongest damping mechanism which contributes to the discrepancy, since

the temperature decreases and the collsional frequency increases with minor radius. In the

instability region ion Landau and trapped electron collisional damping are typically two

competing mechanisms. Near the plasma center the frequency of core localized TAE ap-

proaches lower continuum and the analytical formula for the radiative damping is not valid.

Note that the analytical ion Landau damping is within a factor of two from the HINST

calculated damping and may be a good approximation for the total damping as we used
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Tokamak R,m a,m B0; T �n; 1014cm�3 �(0)�;% �Rr��;% vf=vA vA; 10
9cm=sec

ITER-FEAT 6.2 2 5.3 1 0.8 4 1.78 0.73

FIRE 2.14 0.6 10 4.9 0.31 1.5 1.79 0.725

IGNITOR 1.32 0.48 13.5 15.7 0.2 0.8 2.76 0.47

JET-DT 2.92 0.94 3.82 0.45 0.4 2.3 1.65 0.785

Table I: Main plasma parameters for tokamaks under the consideration.

0.3 0.4 0.5 0.6 0.7

−10
−1

−10
−2

−10
−3

Φ1/2

γ/
ω

γ
HINST

                          
γ
rad

, analyt.                   
γ
rad

+γ
iLandau

, analyt.  

Figure 2: Comparison of numerical damping rates from HINST code with the analytical ones in

FIRE for n = 10 TAE.

above.

For the instability calculations we use TRANSP computed plasma core and �-particle

beta pro�les shown on �gure 3 .

Results of HINST code for FIRE plasma are shown in �gure 4 in the form of the eigen-

frequency and the growth rate for TAEs as functions of
p
�.

Figure 5 shows the eigenfrequency and the growth rate computed by local HINST code

versus TAE toroidal mode number. We are showing the dependence of HINST calculated
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Figure 3: Plasma core and alpha particle pressure as functions of the minor radius variable
p
� in

FIRE.
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Figure 4: TAE eigenfrequency and growth rate as a function of the minor radius variable
p
� in

FIRE.

TAE instability critical beta of ��particles in �gure 6 on minor radius. Note that with

TRANSP calculated value of ��(0) = 0:31% TAE unstable region spanns within 0:5 <
p
� < 0:65 and sharply increases outside. TAEs are the modes which radial width depends

on the shape of the continuum gap and is typically broad. Since the global solution of TAE
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Figure 5: Eigenfrequency and growth rate of TAE vs. toroidal mode number as computed by

HINST in FIRE.
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Figure 6: TAE instability �-particle critical betas in FIRE.

needs averaging over large portion of minor radius the �nal question of TAE critical beta will

require global calculations. Such e�ect as stronger mode coupling through plasma shaping

may introduce stronger continuum damping [20].
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B. International Tokamak Experimental Reactor (ITER)

We perform similar TAE instability growth rate calculations for ITER. Figure 7 shows

1/2Φ

pc

5

Figure 7: Plasma core and alpha particle pressure as functions of the minor radius variable
p
� in

ITER.

radial pro�les of the background plasma and �-particle beta.

TRANSP predicted safety factor pro�le is shown on Fig.8. Numerical q-pro�le is not

monotonic due to several factors, such as NBI and ICRH heating used in TRANSP. We

are performing the sensitivity study of TAE instability to the shape of q-pro�le with the

smoothed q-pro�le according to the formula q = 1 + 2:8�3=2.

Figures 9 and 10 epresent the eigenfrequency and the growth rate computed by HINST

code of TAE as functions
p
� and toroidal mode number n, respectively. As expected from

our estimates in table I maximum growth rate for ITER ar least in local calculation is shifted

to higher n ' 9. Nonetheless the total number of ustable mode is about the same.

In ITER there are plans to use high energy NBI heating. This may contribute to the drive

or damping of TAEs depending on energy of beam ions. Figure 11 shows the contribution of

NBI fast ions as a function of their birth energy at the point of maximum �-particle growth

rate
p
� = 0:5. Expected injection energy of NBI ions is 1MeV . From our calculations it
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Φ1/2

TRANSP

Figure 8: q-pro�le as calculated by TRANSP and smoothed q-pro�le to study its e�ect on TAE

stability.
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Figure 9: TAE eigenfrequency and growth rate as functions of the minor radius variable
p
� in

ITER.

follows that the energy of NBI ions may be reduced to achieve the stabilization of TAEs.

This may provide a control to TAE stability.
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Figure 10: Eigenfrequency and growth rate of TAE vs. n as computed by HINST in ITER.
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Figure 11: Contribution of NBI ions to the growth rate of TAE as a function of the injection energy

in ITER at
p
� = 0:5.

C. IGNITOR

Figure 12 presents the background core plasma and �-particle beta pro�les as functions

of
p
�.
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Figure 12: Background core plasma and alpha particle beta as functions of the minor radius variable
p
� in IGNITOR.

Figure 13 represents the eigenfrequency and the growth rate of TAE functions of
p
�.
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Figure 13: TAE eigenfrequency and growth rate as functions of the minor radius variable
p
� in

IGNITOR.

Figure 14 shows the eigenfrequency and the growth rate computed by local HINST code

and their dependence on the toroidal mode number.
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Figure 14: Eigenfrequency and growth rate of TAE vs. n as computed by HINST in IGNITOR.

D. JET

Figure 15 presents the background core plasma and �-particle beta pro�les as functions

1/2Φ

10

pc

Figure 15: Background core plasma and alpha particle beta as functions of the minor radius variable
p
� in JET.

of
p
�.
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Figure 13 represents the eigenfrequency and the growth rate of TAE as functions of
p
�.
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Figure 16: TAE eigenfrequency and growth rate as functions of the minor radius variable
p
� in

JET.

Figure 14 shows the eigenfrequency and the growth rate computed by HINST code and

their dependence on the toroidal mode number. In JET nonmonotonic behavior of growth
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Figure 17: Eigenfrequency and growth rate of TAE vs. n as computed by HINST in JET.

rate dependence on the radius is due to used numerical betas of plasma and �-particles. The
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maximum growth rate in JET is lower and is expected to be at n ' 6, which close to what

was predicted in other studies [21, 22]. Nevertheless used NBI heating provides stabilizing

e�ect. We computed TAE growth rate for NBI beta �b(0) = 0:6% at injection energy of

deuterium Eb0 = 100keV . HINST shows large damping rate due to NBI ions =! ' 5%. As

was expected in JET the number of unstable mode is small n � 7.
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