

International Thermonuclear Experimental Reactor

ITER-FEAT: Current Status of the Machine and Diagnostics

presented by

A E Costley

ITER JWS, Naka, Japan

First Meeting of the ITPA Topical Group on Diagnostics St. Petersburg, Russia, November 14 – 16, 2001

OUTLINE

ITER-FEAT

- Goals
- Current Status of Machine
- Operation Scenarios and Phases
- Project Developments since March 2001 (14th EG Mttg)
- Time schedules: Construction and Initial Operation

Diagnostics

- Requirements for Plasma and First Wall Measurements
- Current Status of Design
- Outstanding R&D
- Overall Assessment of Performance
- Key Point on Resources and Timing
- Diagnostic work during the CTA (including role of the ITPA Group)

Concluding Remarks

ITER - FEAT GOALS

Plasma Performance

- achieve extended burn in inductively driven plasmas with the ratio of fusion power to auxiliary heating power of at least 10
- for a range of operating scenarios
- with duration sufficient to achieve stationary conditions on the time scales characteristic of plasma processes.
- aim at demonstrating steady-state operation using non-inductive current drive with the ratio of fusion to current drive power of at least 5
- the possibility of controlled ignition should not be precluded

Technology

- demonstration of integrated operation of technologies essential for a fusion reactor
- testing of key components for a fusion reactor
- testing of concepts for a tritium breeding module

Key Design Requirements

- An inductive flat-top capability during burn of 300 to 500 s.
- The design should be capable of supporting advanced modes of plasma operation under investigation in existing experiments, and should permit a wide operating parameter space to allow for optimising plasma performance.
- For nuclear and high heat flux component testing
- average neutron flux $\geq 0.5 \text{ MW/m}^2$
- average neutron fluence ≥ 0.3 MWa/m²

Main Device and Plasma Parameters

Total Fusion Power	500 MW (700 MW)
Q — fusion power/additional heating power	≥ 10
Average 14MeV neutron wall loading	0.57 MW/m² (0.8 MW/m ²)
Plasma inductive burn time	≥ 400 s
Plasma major radius (R)	6.2 m
Plasma minor radius (a)	2.0 m
Plasma current (I _p)	15 MA (<i>17 MA</i> ⁽¹⁾)
Vertical elongation	1.70/1.85
@95% flux surface/separatrix (κ ₉₅)	
Triangularity @95% flux surface/separatrix	0.33/0.49
Safety factor @95% flux surface (q ₉₅)	3.0
Toroidal field @6.2 m radius (B _T)	5.3 T
Plasma volume	837 m ³
Plasma surface	678 m²
Installed aux. heating/current drive power	73 MW ⁽²⁾

- (1) The machine is capable of a plasma current up to 17MA, with the parameters shown in parentheses) within some limitations over some other parameters (e.g., pulse length).
- (2) A total plasma heating power up to 110MW may be installed in subsequent operation phases.

Tokamak Poloidal Cross-Section

ITER Tokamak Cutaway

Cross-section NS Through the Tokamak Building

Tokamak Building – Plan View of the Equatorial Level

Generic ITER Site View

	NB	EC	IC	LH	
	(1MeV)	(170	(~ 50	(5 GHz)	
		GHz)	MHz)		
Power injected per unit equatorial port (MW)	16.5	20	20	20	
Number of units for the first phase	2	1	1	0	
Total power (MW) for the first phase	33	20	20	0	
The 20 MW of EC module power will be used either i) in up to 3 upper ports to control neoclassical tearing modes at the $q = 3/2$ and $q = 2$ magnetic surfaces, or ii) in one equatorial port for H&CD mainly in the plasma centre.					

Heating and Current Drive Parameters

Operation Scenarios and Phases

The design of ITER allows for operation in various scenarios.

- 1. Inductive operation I: 500 MW, Q=10, 15 MA operation with heating during current ramp-up
- 2. Inductive operation II: 400 MW, Q=10, 15 MA operation without heating during current ramp-up
- 3. Hybrid operation
- 4. Non-inductive operation I: weak negative shear operation
- 5. Inductive operation III: 700 MW, 17 MA, with heating during current rampup.
- 6. Non-inductive operation II: strong negative shear

Operation Phases

H Phase

This is a non-nuclear phase, mainly planned for full commissioning of the tokamak system in a non-nuclear environment. Develop full DT phase reference operation. Check partial detached divertor operation in a DT plasma.

D Phase Tritium produced from DD reactions \rightarrow DT reactions. Reference DT operational scenarios can be established.

DT Phases

During the first phase of DT operation the fusion power and burn pulse length will be gradually increased until the inductive operational goal is reached. Noninductive, steady-state operation developed.

Second phase of full DT operation, beginning after a total of about ten years. Emphasize improvement of the overall performance and the testing of components and materials with higher neutron fluences

Performance and Operation Domains

Comparison of Experimental and Predicted by Scaling ITERH-98P(y,2) Confinement Times for the Extended ELMy Standard Dataset of the H-mode Database DB3 [from O. Kardaun, et al., 18th IAEA Fusion Energy Conference, Sorrento, Italy (2000) IAEA-CN-77/ITERP/04]

Operation Domain in H_H -Factor and Fusion Power Space when $I_P = 15$ MA and Q = 10

Operation Domain in H_H -Factor and Fusion Power Space when $I_P = 17$ MA and Q = 50

Pulse length versus fusion gain Q.

Each plasma current given in the figure is the minimum value for the corresponding Q value with $H_{H}=1.0 n_{e}/n_{G} = 0.85$, $\beta_{N}\leq 2.0$ or 2.5, $P_{loss}/P_{LH} \geq 1.3$ and $\tau^{*}_{He}/\tau_{E} = 5$. The fusion power is in the range 400-700 MW.

Project Developments Since March 2001

The EDA was formally concluded in July

The Final Design Report of ITER-FEAT was delivered to the Parties

The site offer from Canada remains. Additional site offers are expected from Japan, France and Spain.

All the current ITER Parties (Ca, Eu, Ja and the RF) have a government backed mandate to start the negotiations towards ITER construction. Negotiations have begun

The Coordinated Technical Activities (CTA) has commenced

The International Team (IT) has been established. It is approximately half the size of the former JCT and resides at the Garching and Naka ITER Joint Work Sites

The key elements of the Work Programme and the deliverables have been determined

Outline proposals of specific work have been drawn up

A method of joint work between the Participating Teams (PT) and the IT on key topics has been proposed

The key elements of the CTA Work Programme are:

Site adaptations and design changes Key systems specifications Preparation for licensing Other Systems Interfaces Necessary Tasks in specific areas

The principal deliverables are:

Revised Construction Schedule and Costs Technical Definition of All Interfaces Definition of Skeleton Procurement Packages Results, Planning and Definition of Qualifying R&D Developed and Reviewed DDDs

TIME SCHEDULES

Overall Schedule to ITER Construction

Overall Schedule up to First Plasma

Plasma and First Wall Measurements required for a ITER

GROUP 1a	GROUP 1b	GROUP 2
Measurements For Machine Protection and	Measurements for Advanced Control	Additional Measurements for
Basic Control		Performance Eval. and Physics
Plasma shape and position, separatrix- wall	Neutron and α -source profile	Confined α -particles
gaps, gap between separatrixes	Helium density profile (core)	TAE Modes, fishbones
Plasma current, q(a), q(95%)	Plasma rotation (toroidal and	T _e profile (edge)
Loop voltage	poloidal)	n _e , T _e profiles (X-point)
Fusion power	Current density profile (q-profile)	T; in divertor
$\beta_{N} = \beta_{tor}(aB/I)$	Electron temperature profile (core)	Plasma flow (divortor)
Line-averaged electron density	Electron density profile (core and edge)	nT/nD/nH (edge)
Impurity and D,T influx (divertor, & main	Ion temperature profile (core)	n[/nD/nH (cuge)
plasma)	Radiation power profile (core, X-point	n 17nD/nH (urvertor)
Surface temp. (div. & upper plates)	& divertor)	T _e fluctuations
Surface temperature (first wall)	Z _{eff} profile	n _e fluctuations
Runaway electrons	Helium density (divertor)	Radial electric field and field
'Halo' currents	Heat deposition profile (divertor)	fluctuations
Radiated power (main pla, X-pt & div).	Ionization front position in divertor	Edge turbulence
Divertor detachment indicator	Impurity density profiles	MHD activity in plasma core
(J _{sat} , n _e , T _e at divertor plate)	Neutral density between plasma and	Pellet ablation
Disruption precursors (locked modes, m=2)	first wall	
H/L mode indicator	n _e , T _e of divertor plasma	
Z _{eff} (line-averaged)	Alpha-particle loss	
nt/n in plasma core	Low m/n MHD activity	
ELMs	Sawteeth	
Gas pressure (divertor & duct)	Net erosion (divertor plate)	
Gas composition (divertor & duct)	Neutron fluence	

ITER: Location of some representative diagnostic components and the principal, radiation

List of Diagnostic Systems

5.5.A	Magnetic Diagnostics
5.5.A.01	Vessel Magnetics *
5.5.A.02	In-Vessel Magnetics*
5.5.A.03	Divertor Coils*
5.5.A.04	Continuous Rogowski Coils*
5.5.A 05	Diamagnetic Loop*
5.5.A 06	Halo Current Sensors*
5.5.B	Neutron Diagnostics
5.5.B.01	Radial Neutron Camera*
5.5.B.02	Vertical Neutron Camera*
5.5.B.03	Microfission Chambers (In-Vessel)*
5.5.B.04	Neutron Flux Monitors (Ex-Vessel)*
5.5.B.07	Gamma-Ray Spectrometers
5.5.B.08	Neutron Activation System*
5.5.B.09	Lost Alpha Detectors
5.5.B.10	Knock-on Tail Neutron Spectrometer
5.5.C	Optical/IR Systems
5.5.C.01	Thomson Scattering (Core)*
5.5.C.02	Thomson Scattering (Edge)
5.5.C.03	Thomson Scattering (X-Point)
5.5.C.04	Thomson Scattering (Divertor)
5.5.C.05	Toroidal Interferometric/Polarimetric System*
5.5.C.06	Polarimetric System (Pol. Magnetic Field Meas.)
5.5.C.07	Collective Scattering System
5.5.D	Bolometric System
5.5.D.01	Bolometric Array For Main Plasma*
5.5.D.02	Bolometric Array For Divertor*
5.5.E.01	Spectroscopic and NPA Systems
5.5.E.01	U Alpha Spectroscopy (based on DNB)
5.5.E.02	H Alpha Spectroscopy*
5.5.E.05	Visible & UV Impurity Monitoring (Divertor)**
5.5.E.04	V Bay Crystal Spectromators**
5.5.E.05	Visible Continuum Array*
5.5.E.00	Soft X Pay Array
5.5.E.07	Neutral Particle Analysers*
5.5.E.00	Laser Induced Fluorescence
5.5.E.10	MSE based on heating beam
5.5.F	Microwave Diagnostics
5 5 F 01	ECE Diagnostics for Main Plasma**
5.5.F.02	Reflectometers for Main Plasma*†
5.5.F.03	Reflectometers for Plasma Position*†
5.5.F.04	Reflectometers for Divertor Plasma
5.5.F.05	ECA for Divertor Plasma
5.5.F.06	Microwave Scattering (Main Plasma)
5.5.F.07	Fast Wave Reflectometry
5.5.G	Plasma-Facing Components and Operational Diagnostics
5.5.G.01	IR Cameras, visible/IR TV
5.5.G.02	Thermocouples*
5.5.G.03	Pressure Gauges*
5.5.G.04	Residual Gas Analyzers*
5.5.G.06	IR Thermography Divertor*

Systems which provide Group 1a, Group 1b, and Group 2 measurements

Port Allocation for the FDR

Layout to diagnostic Hall (note port 11 is now a diagnostic port and houses the direct coupled systems).

Possible Changes to the Machine Design which will Affect Diagnostics (since March)

Reduction in the number of upper ports from 18 to 9

Removal of the cryostat seal plate

Reduction in the number of large ports at the divertor level from 18 to 9

A Design Review Meeting was held in Garching in October when all three points were considered.

Status of Diagnostic Design

Before procurement we need to take the diagnostic design through four phases:

Phase I Initial Feasibility Assessment.

Determination of parameters to be measured; initial estimates of parameter ranges, s/n, space and time resolutions, accuracies; outline of system; identification of key problems of installation; and key areas of design and R&D.

Phase II Concept/Scientific Design

Completion of the feasibility assessment; determination of the characteristics of the principal system components; estimation of the port and space requirements; determination of the design work that must be completed during the EDA; identification of the necessary R&D work; and preliminary determination of the system costs.

Phase III Engineering Design Demonstration of engineering solutions to: (a) the critical system components (eg first mirrors, antennas...), (b) the transmission systems through the diagnostic ports and into the pit without causing unacceptable nuclear heating of the TF coils, and (c) the principal interfaces with the major machine components - shield blanket modules, vacuum vessel cryostat etc;

Demonstration of feasible maintenance procedures; determination of the optimum location for the diagnostic hardware (sources, detectors...), determination of the space requirements and demonstration that suitable transmission systems can be constructed to the remotely sited diagnostic equipment; and further improvement of cost estimates.

Phase IV Integration

Integration of the different systems into the available ports, space in the pit, buildings etc.

Status of Diagnostc Design for ITER-FEAT: November 2001

ITER	DIAGNOSTIC SYSTEM	Principal	Ι	Π	ΠΙ	IV
WBS		Party				
5.5.A	Magnetic Diagnostics	· ·				
5.5.A.01	Vessel Magnetics*	JCT	Х	(X)	(X)	(X)
5.5.A.02	In-vessel Magnetics*	JCT	Х	(X)	(X)	(X)
5.5.A.03	Divertor Coils*	JCT	Х	(X)	(X)	(X)
5.5.A.04	Continuous Rogowski Coils*	JCT	Х	Х	(X)	(X)
5.5.A 05	Diamagnetic Loop*	JCT	Х	(X)		(X)
5.5.A.06	'Halo' Current Sensors*	JCT	Х	(X)		(X)
5.5.B	Neutron Diagnostics					
5.5.B.01	Radial Neutron Camera*	EU/JCT	Х	Х	(X)	(X)
5.5.B.02	Vertical Neutron Camera*	JCT	Х	Х	(X)	(X)
5.5.B.03	Microfis. Chambers (In-Ves.)* N/C	JA	Х	Х	(X)	(X)
5.5.B.04	Neutron Flux Mons (Ex-Vessel)*	RF	Х	Х		(X)
5.5.B.07	Gamma-Ray Spectrometers	RF	Х	(X)		
5.5.B.08	Neutron Activation System	JA	Х	Х		(X)
5.5.B.09	Lost Alpha Detectors* N/C		(X)			
5.5.B.10	Knock-on Tail Neutron Spect. N/C		(X)			
5.5.C	Optical/IR Systems					
5.5.C.01	Thomson Scattering (Core)*	EU	Х	Х	(X)	(X)
5.5.C.02	Thomson Scattering (Edge)	EU	Х	Х	(X)	(X)
5.5.C.03	Thomson Scattering (X-Point)	RF	Х	Х	(X)	(X)
5.5.C.04	Thomson Scattering (Divertor)*	RF	Х	(X)	(X)	(X)
5.5.C.05	Toroidal Interf/Polarim. System*		Х	Х	(X)	(X)
5.5.C.06	Polarim. Sys (Pol. Mag Field Meas.)	EU	Х	(X)		(X)
5.5.C.07	Collective Scattering System N/C		(X)			
5.5.D	Bolometric System					
5.5.D.01	Bolom. Array For Main Plasma*	EU	Х	Х		(X)
5.5.D.02	Bolom. Array For Divertor*	EU	Х	Х		(X)
5.5.E	Spectroscopic and NPA Systems					
5.5.E.01	CXRS Active Spect. (based on DNB)	EU/RF	Х	Х		(X)
5.5.E.02	H Alpha Spectroscopy*	RF	Х	Х	(X)	(X)
5.5.E.03	VUV Impurity Monitor (Main Plasma)*	EU	Х	Х		(X)
5.5.E.04	Vis and UV Impurity Monitor (Div)*	JA	Х	Х	(X)	(X)
5.5.E.05	X-Ray Crystal Spectrometers*	EU/RF	Х	Х		(X)
5.5.E.06	Visible Continuum Array*		Х	Х		(X)
5.5.E.07	Soft X-Ray Array	RF	Х	(X)		
5.5.E.08	Neutral Particle Analyzers*	RF	Х	X	(X)	(X)
5.5.E.10	Laser Induced Fluorescence N/C	RF	Х			
5.5.E.11	MSE based on Heating Beam		(X)	(X)		(X)

5.5.F	Microwave Diagnostics					
5.5.F.01	ECE Diagnostics for Main Plasma*	EU	Х	Х	(X)	(X)
5.5.F.02	Reflectometers for Main Plasma*	EU/RF	Х	(X)	(X)	(X)
5.5.F.03	Reflectometers for Plasma Position		Х	(X)		(X)
5.5.F.04	Reflectometers for Divertor Plasma	EU	(X)	(X)		(X)
5.5.F.05	ECA for Divertor Plasma	EU	(X)			(X)
5.5.F.06	Microwave Scatt. (Main Plasma)					
5.5.F.07	Fast Wave Reflectometry N/C					
5.5.G	Plasma-Facing Components and					
	Operational Diagnostics					
5.5.G.01	IR Cameras, Visible/IR TV*	EU/RF	Х	Х	(X)	(X)
5.5.G.02	Thermocouples*	JCT	Х			(X)
5.5.G.03	Pressure Gauges*	EU	Х	Х		(X)
5.5.G.04	Residual Gas Analyzers*		Х	Х		
5.5.G.06	IR Thermography Divertor*	EU	Х	(X)		(X)
5.5.G.07	Langmuir Probes*	JCT	X	X	(X)	(X)
5.5.H	Diagnostic Neutral Beam	JCT/RF	X	X	(X)	(X)

Key

Х	phase complete	d

(X) phase in progress

- * Start-up diagnostic
- N/C Diagnostic which is based on a technique which is not yet established on existing tokamaks but which is under development.

Outstanding Issues Requiring R&D

There are many topics requiring R&D, key topics are:

RIEMF

Measurement of steady-state magnetic fields

Deposition on mirrors

Requirement for radiation hard bolometers and soft X-ray detectors

Measurements in the divertor

Measurements of confined and escaping alpha particles

A comprehensive list has been developed

Assessment of Measurement Capability (November 2001)

GROUP 1a	GROUP 1b	GROUP 2
Measurements For Machine Protection and	Measurements for Advanced Control	Additional Measurements for
Basic Control		Performance Eval. and Physics
Plasma shape and position, separatrix- wall	Neutron and α -source profile	Confined α -particles
gaps, gap between separatrixes	Helium density profile (core)	TAE Modes, fishbones
Plasma current, q(a), q(95%)	Plasma rot. (tor and pol)	T _e profile (edge)
Loop voltage	Current density profile (q-profile)	n _e , T _e profiles (X-point)
Fusion power	Electron temperature profile (core)	T; in divertor
$\beta_{\mathbf{N}} = \beta_{\mathbf{tor}}(\mathbf{aB/I})$	Electron den profile (core and edge)	Plasma flow (divertor)
Line-averaged electron density	Ion temperature profile (core)	nT/nD/nH (edge)
Impurity and D,T influx (divertor, & main	Radiation power profile (core, X-point	nT/nD/nII (diverter)
plasma)	& divertor)	T functions
Surface temp. (div. & upper plates)	Z _{eff} profile	1 _e nuctuations
Surface temperature (first wall)	Helium density (divertor)	n _e fluctuations
Runaway electrons	Heat deposition profile (divertor)	Radial electric field and field
'Halo' currents	Ionization front position in divertor	fluctuations
Radiated power (main pla, X-pt & div).	Impurity density profiles	Edge turbulence
Divertor detachment indicator	Neutral density between plasma and	MHD activity in plasma core
(J _{sat} , n _e , T _e at divertor plate)	first wall	
Disruption precursors (locked modes,m=2)	n _e of divertor plasma	
H/L mode indicator	T _e of divertor plasma	
Zeff (line-averaged)	Alpha-particle loss	
nT/nD in plasma core	Low m/n MHD activity	
ELMs	Sawteeth	
Gas pressure (divertor & duct)	Net erosion (divertor plate)	
Gas composition (divertor & duct)	Neutron fluence	

Expect to meet meas. reqs; maybe/mabe not; expect not to meet meas reqs.

Key Point on Resources and Timing

If ITER keeps to the planned time schedule, the diagnostic designs have to be completed in about 3 to 7 years.

Before that we have to get to the point where we know that there are no show stoppers and solutions will be found to all the outstanding issues.

To get to this point a substantial effort in both manpower (PPY) and R&D resources (IUA) are required at this time.

Procurement will commence in about 4 years.

Diagnostic Work during the CTA: Proposed Division of Activities and Responsibilities between the IT and the PTs

Function	Key Specific Tasks	IT responsibilities and activities	PT responsibilities and activities
Determination of	Requirements for	Determined in combined	Background work on
measurement	measurements of	work with PT especially	measurement
requirements	• q(r)	ITPA Diagnostics Group.	specifications. ITPA
	• divertor plasma params		advises IT on detailed
	 plate erosion 		requirements.
	dust		
Technique choice	Preferred technique for	Possible techniques	Development of relevant
and validation	 q(r) measurement 	reviewed in combined work	measurement techniques.
	 confined alphas 	with PT especially ITPA	Through ITPA Group,
	 escaping alphas 	Diagnostic Group.	advises IT on choice of
	 erosion and dust 		techniques.
R&D	See separate sheets.	Specification and	Undertaking of required
Radiation effects		assessment of required	R&D including 'volunatry'
Diagnostic Comps		studies. Dissemination of	work driven by the ITPA
Diagnostic Techns		results to system	
		designers.	
Design of Some	For example:	Specification and	Undertaking of required
Critical System	 typical first mirrors 	assessment of required	design at the detailed level
Components	 retroreflectors 	design and possibly outline	(including analysis)
	 divertor optics 	design	

Function	Key Specific Tasks	IT responsibilities and activities	PT responsibilities and activities
System designs and	For example:	Design of systems which	Support of IT work.
interfaces	 magnetics 	have a high degree of	
	 installation of 	interface with the machine,	
	retroreflectors	eg magnetics. Design of	
	in-vessel waveguide	interfaces of other systms.	
System designs	For example:	Specification and	Undertaking of required
	Divertor Thomson	assessment of required	design at appropriate level
	scattering	design	(including performance
	Collective Scattering		analysis where necessary)
	Erosion measurement		Reviewed by the ITPA
Integration	Integration of systems into	Carry out integration.	Support of IT work and
	the available ports, VV and	Specification of supporting	performance of necessary
	divertor to meet required	studies, eg neutronic	studies
	measurement capability.	studies	
Port Engineering	Design of ports and in-port	Performance of design at	Detail design at the
	structures including	the conceptual/feasibility	appropriate level (including
	installation and	level	performance analysis
	maintenance procedures		where necessary)
Construction	Revision and further	Specification, integration	Peformance of tasks and
Schedule, Costing,	development according to	and preparation of high	documentation at the
Procurement	project needs	level project	detailed level
Packages, DDDs		documentation.	

Concluding Remarks

Based on the extensive work done for the ITER98 the diagnostic designs for ITER-FEAT have been developed.

In terms of the available space, access and budget for diagnostics the situation in broad terms is at least as good and in many cases better than it was for the ITER98. The documentation and costing are also more complete although lack depth in some areas.

Many design and R&D issues remain and must be the focus of the next phase of the work. The CTA has commenced and will be the instrument to carry out this work.

Although it is several years before ITER goes to construction the work to do is substantial and enhanced effort is now required.

The support, contribution and drive of the ITPA group are essential.