

International Thermonuclear Experimental Reactor

ITER DIAGNOSTICS

presented by

A E Costley

ITER JWS, Naka, Japan

2nd Meeting of the ITPA Topical Group on Diagnostics, General Atomics, San Diego, 4 - 8 March, 2002

OUTLINE

ITER-FEAT

- Programmatic Objectives
- Key Machine Parameters
- Operation Scenarios and Phases

Requirements for Plasma and First Wall Measurements

• Requirements for Different Operating Scenarios

Diagnostic System Selection and Design

Assessment of Measurement Capability

• Plasma current, position and shape, electron temperature

Necessary Next Steps

Concluding Remarks

ITER-FEAT: PROGRAMMATIC OBJECTIVES

Plasma Performance

- achieve extended burn in inductively driven plasmas with the ratio of fusion power to auxiliary heating power of at least 10
- for a range of operating scenarios
- with duration sufficient to achieve stationary conditions on the time scales characteristic of plasma processes.
- aim at demonstrating steady-state operation using non-inductive current drive with the ratio of fusion to current drive power of at least 5
- the possibility of controlled ignition should not be precluded

Technology

- demonstration of integrated operation of technologies essential for a fusion reactor
- testing of key components for a fusion reactor
- testing of concepts for a tritium breeding module

Key Design Requirements

- An inductive flat-top capability during burn of 300 to 500 s.
- The design should be capable of supporting advanced modes of plasma operation under investigation in existing experiments, and should permit a wide operating parameter space to allow for optimising plasma performance.
- For nuclear and high heat flux component testing
- Average neutron flux \geq 0.5 MW/m²
- Average neutron fluence \geq 0.3 MWa/m²

Main Device and Plasma Parameters

500 MW (700 MW)
≥ 10
0.57 MW/m² (0.8 MW/m ²)
≥ 400 s
6.2/2.0 m
15 MA (17 MA ⁽¹⁾)
1.70/1.85
3.0
5.3 T
837 m³
678 m²
73 MW ⁽²⁾

- (1) The machine is capable of a plasma current up to 17MA, with the parameters shown in parentheses) within some limitations over some other parameters (e.g., pulse length).
- (2) A total plasma heating power up to 110MW may be installed in subsequent operation phases.

Tokamak Poloidal Cross-Section

Heating and Current Drive Parameters

	NB	EC	IC	LH		
	(1MeV)	(170	(~ 50	(5 GHz)		
		GHz)	MHz)			
Power injected per unit equatorial port (MW)	16.5	20	20	20		
Number of units for the first phase	2	1	1	0		
Total power (MW) for the first phase	33	20	20	0		
The 20 MW of EC module power will be used either i) in up to 3						
upper ports to control neoclassical tearing modes at the $q = 3/2$ and q						
= 2 magnetic surfaces, or ii) in one equatorial port for H&CD mainly						
in the plasma centre.						

Operation Scenarios and Phases

The design of ITER allows for operation in various scenarios.

- 1. Inductive operation I: 500 MW, Q=10, 15 MA operation with heating during current ramp-up
- 2. Inductive operation II: 400 MW, Q=10, 15 MA operation without heating during current ramp-up
- 3. Hybrid operation
- 4. Non-inductive operation I: weak negative shear operation
- 5. Inductive operation III: 700 MW, 17 MA, with heating during current ramp-up.
- 6. Non-inductive operation II: strong negative shear

Operation Phases

H Phase

This is a non-nuclear phase, mainly planned for full commissioning of the tokamak system in a non-nuclear environment. Develop full DT phase reference operation. Check partial detached divertor operation

D Phase

Tritium produced from DD reactions \rightarrow DT reactions. Reference DT operational scenarios can be established.

DT Phases

During the first phase of DT operation the fusion power and burn pulse length will be gradually increased until the inductive operational goal is reached. Non-inductive, steady-state operation developed.

Second phase of full DT operation, beginning after a total of about ten years. Emphasize improvement of the overall performance and the testing of components and materials with higher neutron fluences

PLASMA AND FIRST WALL MEASUREMENTS REQUIRED FOR ITER (Control, Evaluation and Anticipated Physics Studies)

GROUP 1a	GROUP 1b	GROUP 2
Measurements For Machine Protection and	Measurements for Advanced Control	Additional Measurements for
Basic Control		Performance Eval. and Physics
Plasma shape and position, separatrix- wall	Neutron and α -source profile	Confined α-particles
gaps, gap between separatrixes	Helium density profile (core)	TAE Modes, fishbones
Plasma current, q(a), q(95%)	Plasma rotation (toroidal and	Te profile (edge)
Loop voltage	poloidal)	ne, Te profiles (X-point)
Fusion power	Current density profile (q-profile)	T; in divertor
$\beta_{N} = \beta_{tor}(aB/I)$	Electron temperature profile (core)	Plasma flow (divertor)
Line-averaged electron density	Electron density profile (core and edge)	nT/nD/nH (edge)
Impurity and D,T influx (divertor, & main	Ion temperature profile (core)	n [/nD/nH (cuge)
plasma)	Radiation power profile (core, X-point	
Surface temp. (div. & upper plates)	& divertor)	T _e fluctuations
Surface temperature (first wall)	Z _{eff} profile	n _e fluctuations
Runaway electrons	Helium density (divertor)	Radial electric field and field
'Halo' currents	Heat deposition profile (divertor)	fluctuations
Radiated power (main pla, X-pt & div).	Ionization front position in divertor	Edge turbulence
Divertor detachment indicator	Impurity density profiles	MHD activity in plasma core
(J _{sat} , n _e , T _e at divertor plate)	Neutral density between plasma and	Pellet ablation
Disruption precursors (locked modes, m=2)	first wall	
H/L mode indicator	ne, Te of divertor plasma	
Zeff (line-averaged)	Alpha-particle loss	
nT/np in plasma core	Low m/n MHD activity	
ELMs	Sawteeth	
Gas pressure (divertor & duct)	Net erosion (divertor plate)	
Gas composition (divertor & duct)	Neutron fluence	
Dust		

Measurement Requirements According to Operating Scenario For Control and Evaluation (not for Physics studies)

Operating Scenario	Required Measurements				
	Control	Evaluation			
H phase.	Plasma shape and position, vertical speed, B _{tor} ,	q(a), halo current, impurity identification and			
Inductive.	I_p , V_{loop} , locked modes, m = 2 modes, low m/n	influx, $n_e(r)$ and $T_e(r)$ in core, T_i in core, P_{rad} from			
Ohmic L- mode.	MHD modes, line-averaged density, runaway	core, line-averaged Z _{eff} , H/L mode indicator, gas			
Limited H-	electrons, surface temperature of divertor plates	pressure and composition (divertor and duct),			
Mode	and first wall	ELM occurrence and type			
D phase.	Plasma shape and position, vertical speed, B _{tor} ,	q(a), halo current impurity identification and			
Inductive. ELMy	I_p , V_{loop} , locked modes, m = 2 modes, low m/n	influx, $n_e(r)$ and $T_e(r)$ in core, T_i in core, P_{rad} from			
H-mode	MHD modes, line-averaged density, runaway	core, line-averaged Z_{eff} , gas pressure and			
	electrons, surface temperature of divertor plates	composition (divertor and duct), shape and			
	and first wall, H/L mode indicator, ELM	position (500 s), β , q(95%), n _e (r) and T _e (r) at			
	occurrence and type, divertor detachment	edge, P_{fus} , $P_{rad}(r)$, heat deposition profile in			
		divertor			

New entry in red. Promotion from evaluation to control in bold

Operating Scenario	Required Measurements				
	Control	Evaluation			
High power D/T	Plasma shape and position (500 s), vertical	q(a), halo current impurity identification and			
phase. Inductive.	speed, B_{tor} , I_p , V_{loop} , locked modes, $m = 2$ modes,	influx, $n_e(r)$ in core, line-averaged Z_{eff} , gas			
ELMY H Mode	low m/n MHD modes, line-averaged density,	pressure and composition (divertor and duct), β ,			
	runaway electrons, surface temperature of	$q(95\%)$, $n_e(r)$ and $T_e(r)$ at edge, $P_{rad}(r)$, heat			
	divertor plates and first wall, H/L mode	deposition profile in divertor, neutron and alpha			
	indicator, ELM occurrence and type, divertor	source profiles, impurity profile, T _i (r) in core,			
	detachment, $T_e(r)$ in core, T_I in core, P_{rad} from	$Z_{eff}(r)$, D and T influx, neutral density (near			
	core, $\mathbf{P}_{\mathbf{fus}}$, $\mathbf{n}_{\mathrm{He}}(\mathbf{r})$, \mathbf{n}_{He} in divertor, $\mathbf{n}_{\mathrm{T}}/\mathbf{n}_{\mathrm{D}}$ in core,	wall), n_e and T_e in divertor, impurity and DT			
	divertor ionisation front position, $v_{tor}(r)$ and	influxes in divertor with spatial resolution, alpha			
	$V_{pol}(r)$	loss, neutron fluence, erosion of divertor tiles			
D/T Phase.	Plasma shape and position (500 s), vertical	q(a), halo current impurity identification and			
Inductive ELMY	speed, B_{tor} , I_p , V_{loop} , locked modes, $m = 2$ modes,	influx, $n_e(r)$ in core, line-averaged Z_{eff} , gas			
H mode. High β	low m/n MHD modes, line-averaged density,	pressure and composition (divertor and duct),			
	runaway electrons, surface temperature of	$q(95\%)$, $n_e(r)$ and $T_e(r)$ at edge, $P_{rad}(r)$, heat			
	divertor plates and first wall, H/L mode	deposition profile in divertor, neutron and alpha			
	indicator, ELM occurrence and type, divertor	source profiles, impurity profile, $T_i(r)$ in core,			
	detachment, $T_e(r)$ in core, T_I in core, P_{rad} from	$Z_{eff}(r)$, D and T influx, neutral density (near			
	core, $P_{fus} n_{He}(r)$, n_{He} in divertor, n_T/n_D in core,	wall), n_e and T_e in divertor, impurity and DT			
	divertor ionisation front position, $v_{tor}(r)$ and	influxes in divertor with spatial resolution, alpha			
	$v_{pol}(r)$, β , localisation of $q = 1.5$ and $q = 2$	loss, neutron fluence, erosion of divertor tiles			
	surfaces, high sensitivity measurements of n _e and				
	T _e , detection and measurement of NTMs.				

Operating Scenario	Required Measurements				
	Control	Evaluation			
Hybrid operation	Plasma shape and position (1000s), vertical	q(a), halo current impurity identification and			
	speed, B_{tor} , I_p , V_{loop} , locked modes, $m = 2$ modes,	influx, $n_e(r)$ in core, line-averaged Z_{eff} , gas			
	low m/n MHD modes, line-averaged density,	pressure and composition (divertor and duct),			
	runaway electrons, surface temperature of	$q(95\%)$, $n_e(r)$ and $T_e(r)$ at edge, $P_{rad}(r)$, heat			
	divertor plates and first wall, H/L mode	deposition profile in divertor, neutron and alpha			
	indicator, ELM occurrence and type, divertor	source profiles, impurity profile, $T_i(r)$ in core,			
	detachment, $T_e(r)$ in core, T_I in core, P_{rad} from	$Z_{eff}(r)$, D and T influx, neutral density (near			
	core, $P_{fus} n_{He}(r)$, n_{He} in divertor, n_T/n_D in core,	wall), n_e and T_e in divertor, impurity and DT			
	divertor ionisation front position, $v_{tor}(r)$ and	influxes in divertor with spatial resolution, alpha			
	$v_{pol}(r)$, β , localisation of $q = 1.5$ and $q = 2$	loss, neutron fluence, erosion of divertor tiles			
	surfaces, high sensitivity measurements of n _e and				
	T _e , detection and measurement of NTMs.				

New entry in red. Promotion from evaluation to control in bold

Operating Scenario	Required Measurements					
	Control	Evaluation				
Steady state	Plasma shape and position (1000s), vertical	q(a), halo current impurity identification and				
operation	speed, B_{tor} , I_p , V_{loop} , locked modes, $m = 2$ modes,	influx, $n_e(r)$ in core, line-averaged Z_{eff} , gas				
	low m/n MHD modes, line-averaged density,	pressure and composition (divertor and duct),				
	runaway electrons, surface temperature of	$q(95\%)$, $n_e(r)$ and $T_e(r)$ at edge, $P_{rad}(r)$, heat				
	divertor plates and first wall, H/L mode	deposition profile in divertor, shape and position				
	indicator, ELM occurrence and type, divertor	(500 s), neutron and alpha source profiles,				
	detachment, $T_e(r)$ in core, T_I in core, P_{rad} from	impurity profile, $Z_{eff}(r)$, D and T influx, neutral				
	core, $P_{fus} n_{He}(r)$, n_{He} in divertor, n_T/n_D in core,	density (near wall), n_e and T_e in divertor,				
	divertor ionisation front position, $v_{tor}(r)$ and	impurity and DT influxes in divertor with spatial				
	$v_{pol}(r)$, β , localisation of $q = 1.5$ and $q = 2$	resolution, alpha loss, neutron fluence, erosion of				
	surfaces, high sensitivity measurements of n_e and	divertor tiles				
	T_e , detection and measurement of NTMs, $T_i(r)$ in					
	core , q(r) (in particular localisation and position					
	of q_{min}), high resolution measurements of the					
	gradient of T _e and T _i , measurement of RWMs					

New entry in red. Promotion from evaluation to control in bold

Initial Operation Plan

* The burn time of 440 s includes 400 s flat top plus 40 s of full power neutron flux to allow for contributions during ramp-up and ramp-down

** Average fluence at first wall (neutron wall load is 0.56 MW/m² on average and 0.77 MW/m² at outboard equator)

ITER Diagnostic Systems and Planned Status at the Startup of the H Phase and of the DT Phase

Diagnostic	Status at Startup	Status at Start of
	(H phase)	DT Phase
Magnetic Diagnostics		
Vessel Wall Sensors, Divertor Magnetics,	Complete	
Continuous Rogowski Coils, Diamagnetic Loop		
Neutron Diagnostics		
Radial Neutron Camera, Vertical Neutron Camera	Interfaces complete	Complete
Micro-fission Chambers (In-Vessel) (N/C)	In-vessel	Complete
	components and	
	interfaces complete	
Neutron Flux Monitors (Ex-Vessel)	Interfaces complete	Complete
Gamma-Ray Spectrometer		Complete
Activation System (In-Vessel), Lost Alpha Detectors	In-vessel	Complete
	components and	
	interfaces complete	
Knock-on Tail Neutron Spectrometer (N/C)		Complete
Optical/IR(Infra-Red) Syst	tems	
Core Thomson Scattering	Complete except for	Complete
	two lasers and one	
	power supply	
	system	

Diagnostic	Status at Startup (H phase)	Start of DT Phase
Edge Thomson Scattering , X-Point Thomson Scattering	Complete except for some spares	Complete
Divertor Thomson Scattering	Penetrations, in- vessel optics and interfaces complete	Complete
Toroidal Interferometer/ Polarimeter, Polarimeter (Poloidal Field Measurement)	Complete	
Collective Scattering System (N/C)	Penetrations, in- vessel optics and interfaces complete	Complete
Bolometric Systems		
Arrays for Main Plasma, Arrays for Divertor	Complete	
Spectroscopic and Neutral Particle A	nalyzer Systems	
H Alpha Spectroscopy, Visible Continuum Array	Complete	
Main Plasma and Divertor Impurity Monitors, X-Ray Crystal Spectrometers,	Penetrations, in- vessel optics and interfaces complete. Partial operation	Complete
Charge eXchange Recombination Spectroscopy (CXRS) based on DNB, Motional Stark Effect (MSE) based on heating beam, Soft X-Ray Array, Neutral Particle Analyzers (NPA), Laser Induced Fluorescence (N/C)	Penetrations, in- vessel optics/sensors and interfaces complete	Complete

Diagnostic	Status at Startup (H phase)	Start of DT Phase
Microwave Diagnostic	S	
Electron Cyclotron Emission (ECE)	Complete except for one spectrometer	Complete
Main Plasma Reflectometer	One LFS (low field side) X-mode and one LFS O-mode complete	Complete
Plasma Position Reflectometer, Divertor Reflectometer,	In-vessel	Complete
Divertor EC absorption (ECA), Main Plasma Microwave	components,	
Scattering,	interfaces	
Fast Wave Reflectometry (N/C)		
Plasma-Facing Components and Opera	tional Diagnostics	
IR/Visible Cameras, Thermocouples, Pressure Gauges, Residual Gas Analyzers, IR Thermography (Divertor), Langmuir Probes	Complete	
Diagnostic Neutral Bea	m	
Diagnostic Neutral Beam (DNB)	Interfaces and main source components complete	Complete

Diagnostic Design

Diagnostic design has to take into account the specific measurement requirements, the environment for the diagnostic components and the available access. In addition, diagnostic designs must satisfy the ITER general design requirements:

- vacuum compatibility and integrity
- containment of tritium
- neutron shielding
- maintainability with remote handling tools
- reliability
- lifetime
- etc

Key Environmental and Radiation Effects

- Radiation-induced conductivity (RIC)
- Radiation induced electrical degradation (RIED)
- Radiation-induced electromotive force (RIEMF)
- Erosion
- Deposition
- Radiation induced absorption
- Radioluminescence
- Nuclear heating
- Dimensional changes (swelling)

ASSESSMENT OF MEASUREMENT CAPABILITY

Plasma Current, Plasma Position and Shape, Loop Voltage, Plasma Energy, Locked Modes

			DANCE or	RESO	LUTION	
MEASUREMENT	PARAMETER	CONDITION	COVERAGE	Time or Freq.	Spatial or Wave No.	ACCURACY
		Default	0 – 1 MA	1 ms	Integral	10 kA
1. Plasma Current	Ip	Default	1 – 17.5 MA	1 ms	Integral	1 %
	I	I _p Quench	20 - 0 MA	0.1 ms	Integral	30 % + 10 kA
	Main plasma gans A	$I_p > 2$ MA, full bore	-	10 ms	-	1 cm
	Wall plasma gaps, Asep	Ip Quench	-	10 ms	-	2 cm
2. Plasma Position and Shape	Divertor channel location	Default	-	10 ms	-	1 cm
	(r dir.)	I _p Quench	-	10 ms	-	2 cm
	dZ/dt of current centroid	Default	0 - 5 m/s	1 ms	-	0.05 m/s (noise) + TBD
		Denuali	0 0 1110	1 1115		% (absolute)
Loop Voltage	Vices	Default	0 - 30 V	1 ms	4 locations	5 mV
	чюр	I _p Quench	$0-500 \mathrm{V}$	1 ms	4 locations	10 % + 5 mV
4. Plasma Energy	ßm	Default	0.01 - 3	1 ms	Integral	5 % at $\beta_p=1$
	ър	Ip Quench	0.01 - 3	1 ms	Integral	~ 30%
8. Locked Modes	Br(mode)/Bp		$10^{-4} - 10^{-2}$	1 ms	(m,n) = (2,1)	30 %
	Mode complex amplitude at wall		TBD	DC – 3 kHz	(0,0) < (m,n) < $(10,2)$	10 %
9. Low (m,n) MHD Modes, Sawteeth, Disruption Precursors	Mode – induced temperature fluctuation		TBD	DC – 3 kHz	(0,0) < (m,n) < (10,2) $\Delta r = a /30$	10 %
	Other mode parameters TBD					

Principal diagnostic: Magnetics

Magnetics

The system is divided partly by location and partly by function into 6 subsystems as follows:

- In-Vessel Sensors: Sensors mounted on the plasma side of the vacuum vessel
- Vessel Sensors: Sensors mounted outside the vacuum vessel, or inbetween the two vacuum vessel skins
- Divertor Coils
- External Rogowski Coils
- Diamagnetic Loop
- Internal Rogowskis

The required magnetic fluxes and fields are obtained after analogue integration with compensation for long term drift. Non-inductive methods and hybrid magnetic sensors are envisaged as a backup system for long pulses.

Poloidal Distribution of Magnetic Sensors. The diamagnetic loops and external Rogowski coils are not shown. [K Ebisawa et al, Rev. Sci. Instrum, vol. 72 No 1, 545, (2001)].

In-Vessel Sensors

This system is comprised of

- Tangential, normal and toroidal equilibrium coils mounted on the inner surface of the vacuum vessel
- Tangential HF coils mounted on the inner surface of the vacuum vessel
- Complete and partial flux loops mounted on the inner surface of the vacuum vessel
- Dedicated saddle loops mounted on the inner surface of the vacuum vessel

Ø42.7, t=2.0m PLASMA SIDE

DETAIL B

Location of a magnetics tube at the field joint next to the poloidal rib.

Sketch showing the tube parameters and relation to the field joint.

Performance Analysis

Plasma Current

				RI	ESOLUTION	
MEASUREMENT	MENT PARAMETER CONDIT RA		RANGE or COVERAGE	Time or Freq.	Spatial or Wave No.	ACCURACY
1. Plasma Current	Ip	Default	0-1 MA	1 ms	Integral	10 kA
			1 – 17.5 MA	1 ms	Integral	1 %
	r	Ip Quench	20 – 0 MA	0.1 ms	Integral	30 % + 10 kA

Specification for the plasma current measurement

Recent studies by JCT and the EU HT have considered main sources of errors:

- Discretisation error on lp
- Integrator drift
- Residual error due to angular misalignment
- Coil-to-coil error due to relative calibration
- Errors due to the eddy currents in the blanket modules

Find the total expected "random" error is 0.3 % (\pm 2 s). This leaves a margin for errors due to radiation effects, contact effects and errors due to the miscalculation of the integration contour (which relies on knowing the exact position of the hot vessel). In addition to this random error there will be a permanent calibration error (estimated ~0.6 %).

In addition

• Backup measurement I (vessel set)

These are similar in number and location, and therefore will suffer similar errors, with the significant exception of radiation induced errors.

• Backup measurement II (External Rogowski)

A separate backup system for this measurement is formed by the external Rogowski. This system is still slower than the vessel system and is sensitive to the total vessel current. However, it does not suffer from discretisation error since it forms a continuous loop, and it suffers least from the effects of integrator drift

Overall assessment

The measurement of the plasma current to the required specification appears feasible.

Plasma Position and Shape

MEASUREMENT	PARAMETER	CONDITION	RANGE or COVERA GE	RESOLUTION		
				Time or Freq.	Spatial or Wave No.	ACCURAC Y
	Main plasma gaps, Δ_{sep}	$I_p > 2$ MA, full bore	-	10 ms	-	1 cm
2. Plasma Position and Shape		Ip Quench	_	10 ms	-	2 cm
	Divertor channel	Default	-	10 ms	-	1 cm
	location (r dir.)	Ip Quench	-	10 ms	-	2 cm
	dZ/dt of current centroid	Default	0-5 m/s	1 ms	-	0.05 m/s (noise) + TBD % (absolute)

Specification for the plasma current measurement:-

Principal diagnostic: Magnetics

Recent studies by JCT and the EU HT have considered main sources of errors:

- Reconstruction Accuracy
- Blanket Eddy Currents
- Plasma Noise
- Integrator Drift
- Integrator Board Noise and Cross-talk
- Parasitic Signals and Distortions

In addition

• Backup measurement I (vessel set)

Reconstruction Accuracy

For the present machine the main plasma gaps (3-6) and divertor channel location gaps (1 and 2) used for control are shown.

Figure: Location of the plasma control gaps g1-g6 in ITER

Static (neglecting eddies) analysis has shown that the typical reconstruction error of the gaps depends on the injected noise.

For an average gap error ($\pm 2\sigma$) of 1 cm or less, the measurement noise level has to be ± 0.7 % ($\pm 2\sigma$) on average. Therefore, a reasonable target for the measurement error on individual coils or loops of less than 0.7 % ($\pm 2\sigma$).

Blanket Eddy Currents: Effect on Measurement of Fast Vertical Position

- Initial concern because of the possible instability of the fast vertical position control loop in the presence of blanket eddy currents
- JCT and EU HT studies showed that control is affected for delays of 5 ms or more, and unstable at 20 ms
- Typical blanket eddy modes are 3 ms and 20 ms (tangential and horizontal axis of magnetic moment)
- Paper calculations showed that, at the coil location, a lead rather than a lag is expected

Right:Toroidal view of the blanket modules shortly after a change in tangential flux (Bs). Left: Time evolution of the tangential field.

Radiation Induced Electromagnetic Force (RIEMF)

RIEMF is a phenomenon which has been observed to occur in experiments in which mineral insulated (MI) cable has been irradiated in test reactors. A substantial data base has been established and theoretical models of the phenomenon developed.

For the expected values of RIEMF voltage and current, for typical coil resistance, the effects on differential signals are expected to be low enough to be negligible. This is because the available current is typically below 1 μ A, at high impedance and the resistance of order 1 Ohm. So even for grossly asymmetric situations, voltages less than 1 μ V are expected; for coils that are symmetric at the 10% level, voltages below 100 nV are expected, and for carefully constructed coils placed in a symmetric environment the effect should be negligible.

However in a limited serious of experiments with prototype coils voltages up to ~ 50 μ V were either observed or implied from the integrator drift. But in the tests there were potentially other sources of voltage, eg thermoelectroc effects, RF pick-up, and so the tests need to be repeated and more detailed measurements made.

Radiation Induced Conductivity (RIC)

Significant errors in the measurement could appear from the presence of additional loads on the coil, the main such effect being radiation-induced conductivity (RIC).

Measured Radiation-Induced Conductivity in bulk single and polycrystalline oxides, and MI Cables as a function of Ionising Dose Rate combined with magnetic diagnostic requirements at selected locations. The vertical bars represent the range of design values of RIC that can be tolerated for each coil; the horizontal bars represent the uncertainty on the flux

Overall assessment

The measurement of the plasma shape and position to the required specification appears feasible but there maybe a pulse length limitation due to possible parasitic signal (RIEMF).

Similarly we expect to meet the target specifications for the other parameters:

- Loop Voltage,
- Plasma Energy,
- Locked Modes,
- 'Halo' currents,
- Toroidal magnetic field,
- Low m/n MHD activity

Critical Areas/Outstanding Tasks

- Complete design, in particular detail many interfaces
- Complete development of steady state magnetic sensor
- Resolve RIEMF issues
- Complete performance analysis

Electron Temperature

MEASUREMENT	PARAMETER	CONDITION	RANGE or COVERAGE	RESO	LUTION	ACCURA CY
23. Electron Temperature	Core T _e	r/a < 0.9	0.5 - 40 keV	10 ms	a/30	10 %
Profile	Edge T _e	r/a > 0.9	0.05 - 10 keV	10 ms	0.5 cm	10 %
41. Divertor Electron Parameters	n _e		$10^{19} - 10^{22} \ /m^3$	1 ms	5 cm along leg, 3 mm across leg	20 %
	Te		0.3 –200 eV	1 ms	5 cm along leg, 3 mm across leg	20 %

Principal Diagnostics: Thomson scattering (Core, Edge, X-pt and Divertor Systems), ECE

Edge Thomson Scattering System

The front end of the edge Thomson scattering system showing the laser line (orange) to the last element supported from the diagnostic block, and collection optics / raytrace (green) to the first vacuum boundary (courtesy P Nielsen, Consorzio RFX, Padova).

X–Point and Divertor Systems

X-point LIDAR and Divertor Leg conventional Th Sc system installed in a port at the divertor level (courtesy G Razdobarin. loffe Institute, St Petersburg)

Main threats to system performance and main sources of error

Thomson scattering

Lifetime of First Mirrors (erosion, deposition, laser damage) Alignment and Calibration Radiation induced absorption and windows Radiation induced absorption in fibres ECE Relativistic and doppler broadening Distortions of the velocity distribution

Calibration

Mirrors and reflectors.

Tests have shown single crystal mirrors (Mo, W) have a high mirror quality even after erosion by sputtering of a layer several μ ms thick.

Reflectance of W mirrors (polycrystal, block monocrystal and real monocrystals with two planes of orientation) at $\lambda = 650$ nm depending on the sputtered layer thickness. [V S Voitsenya et al, Rev. Sci. Instrum, vol. 72 No 1, 475, (2001)]

Suitably chosen metal film mirrors mounted on a metal substrate can have a good resistance to the CXA flux. For example, Rh film mirrors of thickness ~10 μ m mounted on Cu can be used in locations where the CXA flux onto the mirror surface will not exceed 2x10¹⁸atom/m²s (~1/10 of the CXA flux to the first wall)

Dependences on sputtered layer thickness of reflectance at λ = 650 nm and resolving power versus thickness of sputtered layer for Rh film on copper substrate mirrors. [V S Voitsenya et al, Rev. Sci. Instrum, vol. 72 No 1, 475, (2001)]

Overall assessment

The measurement of the Electron Temperature appears feasible at the specified level in the Core and Edge regions but in the divertor region the specified requirements will probably not be met.

Critical Areas/Outstanding Tasks

Thomson scattering

- Lifetime of mirrors due to many pules of high power laser radiation
- Deposition on first mirrors
- Radiation induced absorption in windows transmitting the high power laser radiation

ECE

• Calibration

The integration of diagnostics with other tokamak systems is also important.

DIAGNOSTIC DISTRIBUTION IN DIVERTOR

Note the number of systems that have to be accommodated in addition to diagnostics (RH, pumping, GDC, IVV, etc)

Layout to diagnostic Hall (note port 11 is now a diagnostic port and houses the direct coupled systems).

ASSESSMENT OF MEASUREMENT CAPABILITY

GROUP 1a	GROUP 1b	GROUP 2
Measurements For Machine Protection and	Measurements for Advanced Control	Additional Measurements for
Basic Control		Performance Eval. and Physics
Plasma shape and position, separatrix- wall	Neutron and α -source profile	Confined α -particles
gaps, gap between separatrixes	Helium density profile (core)	TAE Modes, fishbones
Plasma current, q(a), q(95%)	Plasma rot. (tor and pol)	T _e profile (edge)
Loop voltage	Current density profile (q-profile)	n _e , T _e profiles (X-point)
Fusion power	Electron temperature profile (core)	T _i in divertor
$\beta_{\mathbf{N}} = \beta_{\mathbf{tor}}(\mathbf{aB/I})$	Electron den profile (core and edge)	Plasma flow (divertor)
Line-averaged electron density	Ion temperature profile (core)	nT/nD/nH (edge)
Impurity and D,T influx (divertor, & main	Radiation power profile (core, X-point	nT/nD/nII (diverter)
plasma)	& divertor)	T functions
Surface temp. (div. & upper plates)	Z _{eff} profile	1 e fluctuations
Surface temperature (first wall)	Helium density (divertor)	n _e fluctuations
Runaway electrons	Heat deposition profile (divertor)	Radial electric field and field
'Halo' currents	Ionization front position in divertor	fluctuations
Radiated power (main pla, X-pt & div).	Impurity density profiles	Edge turbulence
Divertor detachment indicator	Neutral density between plasma and	MHD activity in plasma core
(J _{sat} , n _e , T _e at divertor plate)	first wall	
Disruption precursors (locked modes,m=2)	n _e of divertor plasma	
H/L mode indicator	T _e of divertor plasma	
Zeff (line-averaged)	Alpha-particle loss	
nT/nD in plasma core	Low m/n MHD activity	
ELMs	Sawteeth	
Gas pressure (divertor & duct)	Net erosion (divertor plate)	
Gas composition (divertor & duct)	Neutron fluence	
Dust		

Operating Scenario	Required Measurements		
	Control	Evaluation	
H phase.	Plasma shape and position, vertical speed,	q(a), halo current, impurity identification and	
Inductive.	B_{tor} , I_p , V_{loop} , locked modes, $m = 2$ modes, low	influx, $n_e(r)$ and $T_e(r)$ in core, T_i in core, P_{rad}	
Ohmic L-	m/n MHD modes, line-averaged density,	from core, line-averaged Z _{eff} , H/L mode	
mode.	runaway electrons, surface temperature of	indicator, gas pressure and composition	
Limited H-	divertor plates and first wall	(divertor and duct), ELM occurrence and	
Mode		type	
D phase.	Plasma shape and position, vertical speed,	q(a), halo current, impurity identification and	
Inductive.	B_{tor} , I_p , V_{loop} , locked modes, $m = 2$ modes, low	influx, $n_e(r)$ and $T_e(r)$ in core, T_i in core, P_{rad}	
ELMy H-mode	m/n MHD modes, line-averaged density,	from core, line-averaged Z _{eff} , gas pressure and	
	runaway electrons, surface temperature of	composition (divertor and duct), shape and	
	divertor plates and first wall, H/L mode	position (500 s), β , q(95%), n _e (r) and T _e (r) at	
	indicator, ELM occurrence and type, divertor	edge, P _{fus} , P _{rad} (r), heat deposition profile in	
	detachment	divertor	

Operating Scenario	Required Measurements		
	Control	Evaluation	
High power	Plasma shape and position (500 s), vertical	q(a), halo current, impurity identification and	
D/T phase.	speed, B_{tor} , I_p , V_{loop} , locked modes, $m = 2$	influx, $n_e(r)$ in core, line-averaged Z_{eff} , gas	
Inductive.	modes, low m/n MHD modes, line-averaged	pressure and composition (divertor and duct),	
ELMY H Mode	density, runaway electrons, surface	β , q(95%), n _e (r) and T _e (r) at edge, P _{rad} (r), heat	
	temperature of divertor plates and first wall,	deposition profile in divertor, neutron and	
	H/L mode indicator, ELM occurrence and	alpha source profiles, impurity profile, $T_i(r)$ in	
	type, divertor detachment, $T_e(r)$ in core, T_I in	core, $Z_{eff}(r)$, D and T influx, neutral density	
	core, P _{rad} from core, P _{fus} , n _{He} (r), n _{He} in	(near wall), n_e and T_e in divertor, impurity	
	divertor, n_T/n_D in core, div ionisation front	and DT influxes in divertor with spatial	
	position, $v_{tor}(r)$ and $v_{pol}(r)$	resolution, alpha loss, neutron fluence, erosion	
		of divertor tiles	

Operating Scenario	Required Measurements			
	Control	Evaluation		
D/T Phase.	Plasma shape and position (500 s), vertical	q(a), halo current, impurity identification and		
Inductive	speed, B_{tor} , I_p , V_{loop} , locked modes, $m = 2$	influx, $n_e(r)$ in core, line-averaged Z_{eff} , gas		
ELMY H mode.	modes, low m/n MHD modes, line-averaged	pressure and composition (divertor and duct),		
High β	density, runaway electrons, surface	$q(95\%), n_e(r) \text{ and } T_e(r) \text{ at edge, } P_{rad}(r), \text{ heat}$		
-	temperature of divertor plates and first wall,	deposition profile in divertor, neutron and		
	H/L mode indicator, ELM occurrence and	alpha source profiles, impurity profile, $T_i(r)$ in		
	type, divertor detachment, $T_e(r)$ in core, T_I in	core, Z _{eff} (r), D and T influx, neutral density		
	core, P_{rad} from core, $P_{fus} n_{He}(r)$, n_{He} in divertor,	(near wall), n _e and T _e in divertor, impurity		
	n_T/n_D in core, divertor ionisation front	and DT influxes in divertor with spatial		
	position, $v_{tor}(r)$ and $v_{pol}(r)$, β , localisation of q	resolution, alpha loss, neutron fluence, erosion		
	= 1.5 and $q = 2$ surfaces, high sensitivity	of divertor tiles		
	measurements of n_e and T_e , detection and			
	measurement of NTMs.			

Operating Scenario	Required Measurements		
	Control	Evaluation	
Hybrid operation	Plasma shape and position (1000s), vertical speed, B_{tor} , I_p , V_{loop} , locked modes, $m = 2$ modes, low m/n MHD modes, line-averaged density, runaway electrons, surface temperature of divertor plates and first wall, H/L mode indicator, ELM occurrence and type, divertor detachment, $T_e(r)$ in core, T_I in 	q(a), halo current, impurity identification and influx, $n_e(r)$ in core, line-averaged Z_{eff} , gas pressure and composition (divertor and duct), q(95%), $n_e(r)$ and $T_e(r)$ at edge, $P_{rad}(r)$, heat deposition profile in divertor, neutron and alpha source profiles, impurity profile, $T_i(r)$ in core, $Z_{eff}(r)$, D and T influx, neutral density (near wall), n_e and T_e in divertor, impurity and DT influxes in divertor with spatial resolution, alpha loss, neutron fluence, erosion of divertor tiles	

Operating Scenario	Required Measurements		
	Control	Evaluation	
Steady state operation	Plasma shape and position for 1000s, vertical speed, B_{tor} , I_p , V_{loop} , locked modes, $m = 2$ modes, low m/n MHD modes, line-averaged density, runaway electrons, surface temperature of divertor plates and first wall, H/L mode indicator, ELM occurrence and type, divertor detachment, $T_e(r)$ in core, T_I in core, P_{rad} from core, $P_{fus} n_{He}(r)$, n_{He} in divertor, n_T/n_D in core, divertor ionisation front position, $v_{tor}(r)$ and $v_{pol}(r)$, β ,localisation of $q =$ 1.5 and $q = 2$ surfaces, high sensitivity measurements of n_e and T_e , detection and measurement of NTMs. $T_i(r)$ in core, $q(r)$ (in particular localisation and position of q_{min}), high resolution measurements of the gradient of T_e and T_i , measurement of RWMs	q(a), halo current, impurity identification and influx, $n_e(r)$ in core, line-averaged Z_{eff} , gas pressure and composition (divertor and duct), q(95%), $n_e(r)$ and $T_e(r)$ at edge, $P_{rad}(r)$, heat deposition profile in divertor, neutron and alpha source profiles, impurity profile, $Z_{eff}(r)$, D and T influx, neutral density (near wall), n_e and T_e in divertor, impurity and DT influxes in divertor with spatial resolution, alpha loss, neutron fluence, erosion of divertor tiles	

NECESSARY NEXT STEPS

On order to proceed we need

- Further design of individual diagnostic systems
- More R&D
 - Radiation and environmental effects on materials used in diagnostic construction (cables, fibres, windows etc)
 - Radiation and enviromental tests on prototype components (magnetic coils, bolometers, etc)
 - Development of new components (eg steady state magnetic sensors, radiation hard soft x-ray detectors)

- Key tests and developments of specific techniques (eg refelcometry from the hfs on the lower cut-off)
- Development of new techniques (eg Fast Wave Reflectometry, techniques for measuring erosion)
- Integration of the diagnostic systems and components into the tokamak and buildings

CONCLUDING REMARKS

The requirements for plasma and first wall measurements must be derived from a careful consideration of the programmatic objectives

Detailed specification is necessary to guide the diagnostic selection and act as a target for the design

The design has to be a careful interplay between the needs of the diagnostic and the generic engineering requirements and must be closely connected with the validating R&D

The assessment of performance has to be related back to the consequences of the measurement capability for the operating scenarios and ultimately the programmatic objectives

For ITER, even though there are considerable uncertainties and much development needs to be done, we believe that the measurements necessary to support the basic programmatic objectives can be made at the specified level

More design and R&D is needed before the final measurement capability can be determined. The design needs to be done at both the system level and for the integration of the systems together and with other tokamak systems.

The R&D is needed on a range of topics from the impact of the environment on components to development to the development of new diagnostic techniques. The design and the R&D work must be closely connected.

The development of new techniques, specifically BPX relevant, would also be beneficial and shoule be encouraged.