CHALLENGES FOR PLASMA DIAGNOSTICS IN A NEXT STEP DEVICE (FIRE)

Kenneth M. Young, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ, 08543

The physics program of any next step tokamak such as FIRE sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g. ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, in fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for TFTR is essential; it must be qualified well before moving into D-T experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described.

•This work has been supported by DOE Contract # DE-AC02-76CHO 3073.

Good Measurements are Necessary for Understanding Next-Step Plasmas

- Burning Plasma Physics
 - access, explore and understand fusion-dominated plasmas,
 - nonlinear coupling inherent in a fusion-dominated plasma.
- Advanced Toroidal Physics
 - develop and test physics needed for an attractive MFE reactor,
 - couple with burning plasma physics.
- Boundary Physics and Plasma Technology
 - high particle and heat flux,
 - couple core and divertor,
 - fusion plasma tritium inventory and helium pumping.

Aspects of Plasma Diagnostics to achieve Burning Plasma Physics Goals in FIRE

- The measurement quality must enable the physics mission to be met;
 - provide the same quality of data as in best present-day devices (with similar specifications to ITER set),
 - provide new information about the alpha-particles.
- High quality, reliable information on many plasma parameters will be used to provide <u>control</u> signals.
- The neutron radiation environment must be considered in design of the diagnostic system.

K.M.Young 23 Jan. 02

Examples of Target Plasma Measurement Capability proposed for ITER-FEAT and Relevant for FIRE

	PARAMETER RANGE	SPATIAL	TIME	
PARAMETER		RESOLUTION	RESOLUTION	ACCURACY
Plasma current	0.1 – 17.5 MA	Not applicable	1 ms	1% (I _p >1 MA)
Total neutron flux	1x10 ¹⁴ - 1x10 ²¹ n s ⁻¹	Integral	1 ms	10%
Neutron & α-particle source	1x10 ¹⁴ -4x10 ¹⁸ ns ⁻¹ m ⁻³	a/10	1 ms	10%
Divertor surface temperature	200 - 2500°C	-	2 ms	10%
Core electron temp-erature profile	0.5 - 30 keV	a/30	10 ms	10%
Edge electron density profile	$(0.05 - 3) \ge 10^{20} \text{ m}^{-3}$	0.5 cm	10 ms	5%
Radiation profile in main plasma	0.01 - 1 MWm ⁻³	a/15	10 ms	20%
Radiation profile in divertor	≤100 MWm ⁻³	5 cm	10 ms	30%

Simplified List of Measurements for Input to Control Systems

- Fast Plasma Shape and Position Control:
 - Magnetic diagnostics, IR camera, Thomson scattering
- Kinetic Profile Control:
 - Thomson scattering, Interferometer, Reflectometer, ECE, CXRS (T_i and He-ash), neutrons,
- Current Profile, Rotation Control:
 - Magnetic diagnostics, Thomson scattering, MSE, CXRS
- Optimized divertor operation:
 - Interferometry, IR camera, spectroscopy
- Fueling control:
 - D,T monitoring (edge good enough?)
- Disruption prevention (first-wall/ divertor protection):
 - Magnetic diagnostics (β ; MHD), kinetic profile set.

K.M.Young 23 Jan. 02

Dimensions of FIRE Vacuum Vessel Ports

K.M.Young 23 Jan. 02

FIRE Port Configuration

K.M.Young 23 Jan. 02

Mounting Space for Diagnostics is Limited

Inner Wall (no slots shown)

- Magnetic diagnostics will have to be incorporated into slots in passive stabilizer and tiles.
- Position coils, Rogowski coils, diamagnetic loops and highfrequency Mirnov coils to be integrated.
 - Wiring will cross at several locations.
 - Mineral-insulated cable and electrical connections are concern.
- Radiation impact on conductivity of insulators and through nuclear heating.
- Maintenance complexity has to be considered in design.

Design Issues in Diagnostic Integration

- It is essential to carry diagnostic design along with other invessel system designs:
 - Magnetic diagnostics have specific integration needs with the first wall.
 - Sightlines through and past the divertor must be assured (3cm poloidal slot possible by removing row of tungsten brushes; >5cm toroidal gap possible between outer divertor and passive tiles; 5 cm x 15 cm slot in outer divertor to match top port sought.
 - Diagnostic "plugs" for all ports assure diagnostic operation and limit external radiation levels.
 - Potential interferences with water piping for divertor and first wall.

The Impact of the Neutron (Gamma) Environment

- Special design and materials to be used for in-vessel systems
 - Also prevents the use of many present-day diagnostic components.
- Requirement for thick shielding, penetrated by complex labyrinths.
- Constraint on the use of optical components, especially lenses and fiberoptics.

Radiation Environment at Selected FIRE locations

200 MW DT Pulses	Total Neutron Flux (n/cm ² s)	Fast Neutron Flux (E>0.1MeV) (n/cm ² s)	Total Gamma Flux (g/cm ² s)	Si -Dose Rate (Gy/s)	Total Cumulative Lifetime Dose * (Gy)
First Wall (Inboard Midplane)	1.54x10 ¹⁵	1.05×10^{15}	7.56x10 ¹⁴	1.17x10 ⁴	3.09x10 ⁸
Behind Tiles (Inboard Midplane)	1.26x10 ¹⁵	8.00x10 ¹⁴	6.68x10 ¹⁴	7.72x10 ³	2.08x10 ⁸
Behind TF Coils (Outboard Midplane)	9.52x10 ⁸	3.68x10 ⁸	1.41x10 ⁸	1.2x10 ⁻³	31.1
Behind 1.1 m Port Plug (Outboard Midplane)	1.01x10 ⁸	3.99x10 ⁷	7.91x10 ⁷	6x10 ⁻⁴	15.1
Behind TF Coils at Top/Bottom	2.50×10^{10}	9.46x10 ⁹	7.71x10 ⁹	6.2x10 ⁻²	1.63×10^3

* 5TJ DT and 0.5 TJ DD

Mohamed Sawan (U. Wisconsin)

K.M.Young 23 Jan. 02

Radiation Effects on Diagnostic Components

- Diagnostic Component Worst Radiation Problem
- Ceramics (and Detectors) Electrical (RIC, RIED, RIEMF)
 - RIC, and potentially RIEMF, are most severe issue for ceramics and MI cable used in magnetic diagnostics
- Fiberoptics (and Windows) Absorption, Luminescence, Numerical aperture
 - Developments of new doped fibers in progress for reducing absorption,
 - Luminescence problem for low-light level signals.
- Mirrors

Mechanical + Neutrals in Surface Modification (near first wall)

- Studies of surface damage impact and of surface preparations in progress.

Magnetic Diagnostics: Issues

- Loops, coils, MI-cable must be inside vacuum vessel,
- Maximally unfriendly environment; RIC and RIEMF, temperature, neutral particles,
- Very limited space behind tiles;
 - need grooves in tiles, cladding,
 - potential poloidal locations at vacuum vessel segment boundaries
- Renew R&D program on radiation impact on ceramics/MI cable.

COMPARISON OF THE MEASURED RADIATION INDUCED CONDUCTIVITY IN MONOLITHIC CERAMICS vs. MI CABLES

Zinkle et al.

K.M.Young 23 Jan. 02

Luminescence (and absorption) Impact on Measurement

- Lost-α diagnostic on TFTR with fiberoptic outside vacuum vessel.
- TFTR shot at 5MW (5x10⁻² MW/m² at first wall.
- Dose at front end of fiber (in shielding)
 - ~ 30 Gy/s.

Signal observed from scintillator/fiberoptic during TFTR D-T (D. Darrow)

K.M.Young 23 Jan. 02

Measurement of the internal energy source essential as we move from externally-driven to internally-driven plasmas

K.M.Young 23 Jan. 02

Possible Diagnostics for Alpha-Particle Physics

- Confined α-particle diagnostics (Development required)
 - α -CHERS,
 - Pellet charge-exchange (PCX) for radial distribution,
 - Collective scattering (µwave offers best spatial distribution (& rcfraction), CO2, FIR?),
 - Knock-on neutron,
 - New confined- α detector???
- Escaping fast-ion detectors and IR camera,
- High-frequency Mirnov coils, reflectometry for turbulence studies.

- PCX measurement of the trapped alpha density profile in an MHD-quiescent supershot.
- Only the trapped alphas born inside the stochastic ripple boundary for $E_{\alpha} = 3.5$ MeV are confined and can slow down to produce the measured profiles.

Fisher et al.

K.M.Young 23 Jan. 02

DRAFT FIRE R&D Proposals

• Irradiation Tests of Materials

- Evaluation of radiation-induced conductivity (RIC) in selected ceramics and MI cable to define design materials
 - Test coil ceramics to FIRE first-wall flux levels and temperatures,
 - Test MI cable in realistic configurations.
- Determine cause of radiation-induced emf (RIEMF) with MI cables to prevent signal pollution by significant DC offsets (with EU and Japan).
- Evaluation of electrical connection techniques for remote handling and insulation properties.
- Test selected optical fibers for performance in realistic radiation environment at relatively low lightsignal levels (with EU, Japan and Russia).
- Development of New or Improved Diagnostic Techniques
 - Develop an Intense Diagnostic Neutral Beam: specification ~125 keV/amu, 1x10⁶ A/m² in a cross-section of 0.2m x 0.2m at the plasma edge for 1 µsec at 30 Hz repetition rate (LANL started development for ITER R&D).
 - Complete demonstration of fast-wave reflectometry for measuring hydrogen isotope ratios in the core (continuing work started by GA for ITER).
 - Extend the operational range of Faraday-cup based and scintillator-based escaping-α diagnostics to FIRE parameters (U.Colorado/PPPL program through JET).
 - Seek new technique for measuring the confined fast-alphas.

DRAFT FIRE R&D Proposals (continued)

- Development of New Components/Techniques
 - Continue development of small radiation-hard high-temperature magnetic probes based on integrated-circuit manufacturing techniques.
 - Develop a prototype "plug" to incorporate required tolerances, alignments, assurance of ground isolation, actuation of shutters, etc.
 - Evaluate metallic mirror performance and effects on reflectivity of neutral particle bombardment and nearby erosion (ongoing ITER R&D activity).
 - Develop in-vacuo electrical connection techniques for reliability, remote handling and insulation properties

Diagnostics proposed for FIRE (1)

Physics Parameter	Control	Diagnostic Set	Issues and Comments
Magnetic Measurements			
Plasma current		Rogowski Coils	All magnetics inside vacuum vessel
Plasma shape and position		Flux/voltage loops	Very high radiation environment and high
Shape, position & MHD		Saddle coils (inc. locked-mode)	temperature apply for all magnetics
•		Discrete Br, Bz coils	Very little space behind first wall/divertor
Plasma pressure		Diamagnetic loops	
Disruption-induced currents		Halo current sensors	
•			
Current Density Profiles			
Current density for most of profile	\checkmark	Motional Stark effect	Requires neutral beam. Two views may give Er
		FIR polarimetry	Most sightlines radial; poor coverage in radial plane
Current density in edge		Li-beam polarimetry	Requires Lithium beam; integration issue
Electron Density			
Core electron density profile	\checkmark	Thomson scattering	Tangential laser, imaging view required by small plasma size
		FIR multichannel	Most sightlines radial; poor coverage in radial plane; tangential polarimeter
X-point/divertor density profiles		Thomson scattering	Design integration into side ports with divertor/first wall
Edge, transp. boundary profile		mm-wave reflectometer	
Edge density profile		Fast-moving probe	
Divertor density variation along		Multichannel interferometer	Complex integration with divertor/baffle;
separatrix			Dynamic range may make this impossible
Divertor plate density		Fixed probes	RIED may affect probe insulation

K.M.Young 23 Jan. 02

Diagnostics proposed for FIRE (2)

Physics Parameter	Control	Diagnostic Set	Issues and Comments
Electron Temperature			
Core electron temperature profil	€√	Thomson scattering	Tangential laser, imaging view required by small plasma size
		ECE heterodyne radiometer	
		ECE Michelson interferometer	Provides best calibration for ECE diagnostice
X-point/divertor temperature profiles		Thomson scattering	Design integration into side portswith divertor/first wall
Edge temperature profile		Fast-moving probe	
Divertor plate electron temp.		Fixed probes	RIED may affect probe insulation
Ion Temperature			
Core ion temperature profile		Charge exchange spectroscopy	Requires neutral beam
		Imaging x-ray crystal spect.	Full radial coverage would require close-in curved crystal; detector noise issue?
		Neutron camera spectroscopy	Full coverage difficult; spatial res. Poor
Divertor ion temperature		UV spectroscopy	
Plasma Rotation			
Core rotation profile		Charge exchange spectroscopy	Requires neutral beam: balanced views for $v\theta$ needed
		Imaging x-ray crystal spect.	Full radial coverage would require close-in curved crystal; detector noise issue?
Relative Isotope Concentratio	n		
Density of D and T concentrations in core		Charge-exchange spectroscopy	Requires neutral beam
		Neutron spectroscopy	Can DD neutrons be discriminated from DT and TT neutrons?

Diagnostics proposed for FIRE (3)

Physics Parameter	Control	Diagnostic Set	Issues and Comments
Radiation			
Zeff, visible bremsstrahlung		Visible bremsstrahlung array	
Core hydrogen isotopes, low-Z impurities		Visible filterscopes	
Divertor isotopes and low-Z impurities		Divertor filterscopes	
Core low-Z impurities		Visible survey spectrometer	
		UV survey spectrometer	
Divertor low-Z impurities and detachment		Multichord visible spectrometer	Very little space to develop sightlines
High-Z impurities		X-ray pulse height analysis	Single sightline, detector noise
Divertor impurities		UV spectrometer	Access issue into divertors
Total radiation profile		Bolometer arrays	Mounting and radiation-hardness of bolometers are challenges
Total light image		Visible TV imaging	
MHD and Fluctuations			
Low-frequency MHD		Discrete Br, Bz coils	Very little space behind first wall/divertor
		Saddle coil for locked-mode	
		Neutron fluctuation dets.	
High-frequency MHD, TAE, etc	. √	High-frequency Mirnov coils	HF-coils behind tile-gaps, little space
Core density fluctuations		Mm-wave reflectometers	
		Beam emission spectroscopy	Requires neutral beam
Core electron temp. fluctuations		ECE grating polychromators	
Neutron Measurements			
Calibrated neutron flux		Epithermal neutron detectors	Calibration difficult with significant shielding
Neutron energy spectra		Multichannel neutron camera	Difficult to get wide spatial coverage

K.M.Young 23 Jan. 02

Diagnostics proposed for FIRE (4)

Physics Parameter	Control	Diagnostic Set	Issues and Comments
Alpha-particle Measurements			
Escaping alpha-particles/fast-ions		Faraday cups/scintillators at first wall	Much development needed to handle heat loads and signal transmission
		IR TV imaging	Only gives information about total loss location
Confined thermalizing alphas/spatial distribution		α-CHERS	Requires neutral beam, very high throughput optics
Confined alpha-particles' energy distribution		Collective scattering	Need development to optimize wavelength/ spatial resolution; assume mm-wave
Spatial redistribution of alphas		Li-Pellet charge exchange	Needs high-energy repetitive impurity pellet; very difficult access
Volume-average alpha-particle energy spectrum		Knock-on bubble-chamber neutron detectors	Development of detectors required
		Neutron spectrometer	Evaluates knock-on tail above 14 MeV
Runaway electrons			
Start-up runaways		Hard x-ray detectors	Inside vacuum vessel; survival with necessary sightlines is issue
Disruption potential runaways		Synchrotron rad. detection	Far-forward light cone must be detected
Divertor Pumping Performanc	e		
Pressure in divertor gas-box		ASDEX-type pressure gauges	Concern about RIED affecting operation
Helium removed to divertor		Penning spectroscopy	

Diagnostics proposed for FIRE (5)

Physics Parameter	Contro	Diagnostic Set	Issues and Comments
Machine Operation Support			
Vacuum base pressure		Torus ion gauges	On main pumping duct
Vacuum quality		Residual gas analyzer	On main pumping duct
Vacuum vessel illumination		Insertable lamps	To enable initial level of internal inspection
Surface Temperature			
First-wall/RF antenna temp.		IR TV imaging	
Divertor plate temperatures and detachment	\checkmark	IR TV imaging	
		Thermocouples	
Neutral particle sources for diagnostics			
Neutral particle source for core spectroscopy	indirect	Diagnostic neutral beam	Pulsed high power beam required for penetration at ~ 150 keV/amu
Lithium source for polarimetry		High current lithium beam	In development for DIII-D (JET?)
Lithium pellet target for confined alpha spatial dist.		High velocity lithium pellet injector	> 5 km/s, ~10 Hz development needed

FIRE Diagnostics: Top Port Assignments

A:

B: Magnetics Wiring

C: Illumination

D:

E: Probe Wiring

- F: Magnetics Wiring
- G: Illumination

H:

I:

J: Magnetics Wiring K: Illumination

L: Probe Wiring

M:

N: Magnetics Wiring

O: FIR Interferometer/Polarimeter

P:

K.M.Young 23 Jan. 02

FIRE Diagnostics: Outer Upper Port Assignments

A: Divertor IR TV, IR TV, Penning Gauge **B**: Divertor Pump/Water C: Multichord Visible Spectrometer, **Bolometer** Array **D**: Divertor Pump/Water E: Divertor IR TV, IR TV, Thermocouple Wiring F: Divertor Pump/Water G: ASDEX Gauges, **Divertor UV Spectrometer** H: Divertor Pump/Water I: Rotation CXRS, Divertor IR TV. Divertor TV J: Divertor Pump/Water K: Bolometer Array, Separatrix Interferometer L: Divertor Pump/Water M: Divertor IR TV, Divertor TV, Thermocouple Wiring N: Divertor Pump/Water O: Divertor Filterscope, **ASDEX Gauges P**: Divertor Pump/Water

K.M.Young 23 Jan. 02

FIRE Diagnostics: Radial Port Assignments

Blue: Diagnostics Components Orange: Diagnostics-provided Services Red: Auxiliary Systems Green: Services

K.M.Young 23 Jan. 02

A: MSE (2), I: TVTS Detection. CXRS (2), Plasma TV. Beam Emission Spectroscopy, **IRTV** Lost- α System Soft X-ray Array **B:** Diagnostic Neutral Beam J: TVTS Laser. C: Pump Duct, Pellet Charge Exchange, Pellet Injector, Li-Pellet Injector, Ion Gauges, Hard X-ray Detector RGA Synchrotron Rad. Detector D: Visible Survey Spectrometer, K: ICRF Launcher Visible Filterscopes, L: ICRF Launcher Visible Bremsstrahlung, M: ICRF Launcher UV Survey Spectrometer N: ICRF Launcher E: X-ray Crystal Spectrometer, O: FIR Interferometer/ Polarimeter, X-ray PHA, Plasma TV, Hard X-ray Detector IR TV, **TVTS Dump Bolometer** Array **F: TVTS Detection** P: MSE (1), Plasma TV, CXRS (1), IR TV, **α-CHERS MM-wave Receiver** G: Neutron Camera, **Neutron Fluctuation Detectors Bolometer** Array H: ECE Systems, Reflectometers,

H: ECE Systems, Reflectometers, MM-wave Collective Scattering Source and Receiver, Magnetics Wiring

FIRE Diagnostics: Outer Lower Port Assignments

A: Divertor IR TV, IR TV, Penning Gauge **B**: Divertor Pump/Water C: Multichord Visible Spectrometer, **Bolometer** Array **D**: Divertor Pump/Water E: Divertor IR TV, IR TV, Thermocouple Wiring F: Divertor Pump/Water G: ASDEX Gauges, **Divertor UV Spectrometer** H: Divertor Pump/Water I: Rotation CXRS, Divertor IR TV, **Divertor TV** J: Divertor Pump/Water K: X-point Thomson Scattering, **Bolometer** Array L: Divertor Pump/Water M: Divertor IR TV, Divertor TV, Thermocouple Wiring N: Divertor Pump/Water O: Divertor Filterscope, **ASDEX** Gauges, Inside-Launch Pellet **P**: Divertor Pump/Water

K.M.Young 23 Jan. 02

FIRE Diagnostics: Bottom Port Assignments

A: **B:** Magnetics Wiring **C**: Illumination D: E: Probe Wiring F: Magnetics Wiring **G**: Illumination H: I: J: Magnetics Wiring K: Illumination L: Probe Wiring M: N: Magnetics Wiring O: FIR Interferometer/Polarimater P:

K.M.Young 23 Jan. 02

Some Final Thoughts

- Significant detailed design and analysis is required to determine the real access capability for diagnostics:
 - The small size, high field, high density FIRE plasma provides some measurement difficulty relative to the ITER-FEAT device,
 - The determination of the spatial resolution required for some measurements has to await some conceptual design. Even "standard" measurements like n_e and T_e may not meet stringent spatial-resolution requirements for ITBs,
 - Interaction with shielding and internal hardware must be designed,
 - Reliability and maintainability of in-vessel diagnostics is necessary goal.
- A diagnostic beam is essential for control and physics: profiles of q, ion temperature, rotation, Heash, slowing- α s, and possibly E_r require it.
- Microwave scattering has been adopted for measurement of confined-αs: TEXTOR data shows promise. Development of new techniques should be encouraged.
- Development of a technique for measuring the escaping- α s is necessary; test should be done on JET-EP.

*Work Supported by US DOE Contract No. DE-AC02-76CHO-3073

