Section	Title	Pages	Author	Coordinator
1.0.0.0.	Executive Summary	0.2	co-chairs	co-chairs
1.1.0.0.	Science, technology, and energy development path benefits of MFE burning	0.5	co-chairs	co-chairs
	plasma experiments and IFE integrated research experiments and assessment of			
	scientific and technological readiness			
1.1.1.0.	Roles of burning plasmas in fusion science and in the fusion development path,	0.4	co-chairs	co-chairs
	and relations to the base program			
1.1.1.1.	MFE	0.3	co-chairs	co-chairs
1.1.1.2.	IFE	0.3	co-chairs	co-chairs
1.1.2.0.	Scientific readiness and scientific questions/issues to be addressed/resolved in	0.3	co-chairs	co-chairs
	the major next step approaches			
1.1.2.1.	MFE burning plasma experiments	0.3	co-chairs	co-chairs
1.1.2.2.	IFE integrated research facilities	0.3	co-chairs	co-chairs
1.1.3.0.	Technology readiness and technology benefits of major next steps, including	0.3	co-chairs	co-chairs
	development path benefits			
1.1.3.1.	MFE burning plasma experiments	0.3	co-chairs	co-chairs
1.1.3.2.	IFE integrated research facilities	0.3	co-chairs	co-chairs
1.1.4.0.	Relationship between tokamak's and ICCs' burning plasmas' science,	0.3	co-chairs	co-chairs
	technology, and development paths			
1.2.0.0.	Uniform assessment of proposed major next steps [NOT a selection of "the	0.2	co-chairs	co-chairs
	best"]			
1.2.1.0.	MFE burning plasma experiments	0.5	co-chairs	co-chairs
1.2.1.1.	Scope and description of each approach/next-step-option for burning plasma	1	co-chairs	co-chairs
	experiments			
1.2.1.2.	Brief description of assessment methodology	1	co-chairs	co-chairs
1.2.1.3.	Overview of uniform technical assessment of benefits (physics, technology and	1	co-chairs	co-chairs
	development path), credibility, and cost of each approach/option			
1.2.2.0.	IFE integrated research facilities	0.3	co-chairs	co-chairs
1.2.2.1.	Scope of each approach/ next-step-option for integrated research facilities	1	co-chairs	co-chairs
1.2.2.2.	Brief description of assessment methodology	1	co-chairs	co-chairs

1.2.2.3.	Overview of uniform technical assessment of benefits (physics, technology and	1	co-chairs	co-chairs
	development path), credibility, and cost of each approach/option			
2.0.0.0.	Introduction for both MFE and IFE Next Steps	0.2	co-chairs	co-chairs
2.1.0.0.	Background of the study in both MFE and IFE	1	co-chairs	co-chairs
2.2.0.0.	Goals of the study in both MFE and IFE	1	co-chairs	co-chairs
2.3.0.0.	Brief description of the study's products and processes	1	co-chairs	co-chairs
3.0.0.0.	MFE Next Steps	0.1	MFE.*	Prager
3.1.0.0.	Overviews of MFE burning plasmas science, technology, and experimental	0.1	MFE.*	Prager
	approaches/objectives			
3.1.1.0.	Physics issues of MFE burning plasmas	0.1	MFE.P*	Prager
3.1.1.1.	Wave-particle interactions	1	MFE.P1	Prager
3.1.1.2.	Energetic particles/alpha-physics	1	MFE.P2	Prager
3.1.1.3.	MHD	1	MFE.P3	Prager
3.1.1.4.	Transport	1	MFE.P4	Prager
3.1.1.5.	Boundary physics	1	MFE.P5	Prager
3.1.1.6.	Integration	1	MFE.P*	Prager
3.1.2.0.	Technology issues of MFE burning plasma next steps	0.2	MFE.T*	Baker
3.1.2.1.	Magnets	1	MFE.T1	Baker
3.1.2.2.	PFC/heat removal	1	MFE.T2	Baker
3.1.2.3.	Heating/current drive	1	MFE.T3	Baker
3.1.2.4.	Vacuum vessel/remote handling	1	MFE.T4	Baker
3.1.2.5.	Safety/tritium/materials	1	MFE.T5	Baker
3.1.2.6.	Costing	1	MFE.T6	Baker
3.1.3.0.	Experimental approach and objectives	0.2	MFE.E*	Taylor
3.1.3.1.	Diagnostics	1	MFE.E1	Taylor
3.1.3.2.	Integrated scenarios/ignition physics/burn control	1	MFE.E2	Taylor
3.1.3.3.	Physics operations	1	MFE.E3	Taylor
3.1.3.4.	Development path	1	MFE.E4	Taylor
3.2.0.0.	Approaches to MFE burning plasma studies: development paths and next step	0.3	MFE.*	Navratil,
	options			Sauthoff

3.2.1.0.	MFE development paths (including US strategy, integrated/supporting paths for burning plasmas and concept optimization)	0.1	MFE.E4	Taylor
3.2.1.1.	Modular approach (including ICCs)	2	MFE.E4 and MFE.B4	Taylor
3.2.1.2.	Integrated physics/technology approach (including ICCs)	2	MFE.E4 and MFE.B4	Taylor
3.2.1.3.	Relationship between MFE innovative confinement concepts (ICCs) and tokamak burning plasmas (science and technology)	3	MFE.B4	Taylor
3.2.2.0.	Visions of the future program	0.1	MFE.*	Navratil, Sauthoff
3.2.2.1.	Visions of the program 10-15 years in the future with and without a burning plasma experiment	2	Community Issues	Navratil, Sauthoff, Bangerter
3.2.2.2.	Roles of the "base program" and "curiosity-driven science" in the future program	2	Community Issues	Navratil, Sauthoff, Bangerter
3.2.3.0.	Pro's and con's of domestic and international programs and of facilities inside and outside the US	4	Community Issues	Navratil, Sauthoff, Bangerter
3.2.4.0.	MFE next step options addressed in this study	0.3	MFE.B1-3	Nevins
3.2.4.1.	FIRE	3	MFE/B1	Nevins
3.2.4.2.	Ignitor	3	MFE/B2	Nevins
3.2.4.3.	ITER	3	MFE/B3	Nevins
3.3.0.0.	Uniform assessments of tokamak approaches to MFE burning plasmas, including explicit sub-outline sections on:(i) key issues and associated assessment criteria; (ii) methods for projecting plasmas in future devices; (iii) assessment tools and methods; and (iv) uniform assessments of approaches to burning plasmas (FIRE, IGNITOR, and ITER)	0.5		Navratil, Sauthoff
3.3.1.0.	Physics issues of MFE burning plasmas	0.2	MFE.P*	Prager
3.3.1.1.	wave-particle interactions	3	MFE.P1	Prager

3.3.1.2.	energetic particles/alpha-physics	3	MFE.P2	Prager
3.3.1.3.	MHD	3	MFE.P3	Prager
3.3.1.4.	transport	3	MFE.P4	Prager
3.3.1.5.	boundary physics	3	MFE.P5	Prager
3.3.1.6.	integration	3	MFE.P*	Prager
3.3.2.0.	Technology issues of MFE burning plasma next steps	0.2	MFE.T*	Baker
3.3.2.1.	magnets	3	MFE.T1	Baker
3.3.2.2.	PFC/heat removal	3	MFE.T2	Baker
3.3.2.3.	heating/current drive	3	MFE.T3	Baker
3.3.2.4.	vacuum vessel/remote handling	3	MFE.T4	Baker
3.3.2.5.	safety/tritium/materials	3	MFE.T5	Baker
3.3.2.6.	costing	3	MFE.T6	Baker
3.3.3.0.	Experimental approach and objectives	0.2	MFE.E*	Taylor
3.3.3.1.	diagnostics	3	MFE.E1	Taylor
3.3.3.2.	integrated scenarios/ignition physics/burn control	3	MFE.E2	Taylor
3.3.3.3.	physics operations	3	MFE.E3	Taylor
3.3.3.4.	development path	3	MFE.E4	Taylor
3.3.4.0.	Contributions to the ICC development paths	3	MFE.B4	Taylor
4.0.0.0.	IFE Next Steps		IFE.*	Bangerter
4.1.0.0.	Overview of IFE (5 pp)			Bangerter
4.1.1.0.	Generic description of IFE concept - pulsed, modular			Bangerter
4.1.2.0.	Separability of driver, targets, and chamber - allows modular cost-effective			Bangerter
	research on key issues with synergy between integrated concepts. Discuss			
	table showing spatial and time separation of systems and phenomena; discuss			
	implications for scaled studies of system behavior.			
4.1.3.0.	Builds upon ICF program (NNSA-funded) but energy application requires			Bangerter
	expanded scope of research to achieve high repetition rates, and to produce			
	economic energy with safety and reliability.			
4.1.4.0.	Overall IFE Program Roadmap - Introduce the integrated research experiments			Bangerter
	(IREs). Also introduce the ETF and the Demo steps that follow NIF ignition			

	(e.g. scaled demonstrations of all aspects of IFE power plant functions	
	including the generation of fusion electricity).	
4.2.0.0.	Integrated IFE Concepts (Current Point Design Descriptions) [5 pp ; 1 p intro	Bangerter
	plus 1 p each driver type]. These are specific present-day manifestations of an	
	IFE system, for each driver. Also present the primary ETF parameters (driver	
	energy, target yield and rep-rate, chamber geometric scaling and basis for	
	selection (primary phenomena to be preserved)), possibly in a table format that	
	covers all of the driver concepts)	
4.2.1.0.	Lasers	Bangerter
4.2.1.1.	KrF	Bangerter
4.2.1.2.	DPSSL	Bangerter
4.2.2.0.	Ions	Bangerter
4.2.2.1.	Induction linacs	Bangerter
4.2.2.2.	Other accelerators	Bangerter
4.2.3.0.	Z-pinches	Bangerter
4.2.4.0.	Fast ignitor options	Bangerter
4.3.0.0.	Near-term R&D plans to address critical issues [27 pp; 1 p introduction plus 26	Bangerter
	pp on specific topics]. First list critical issues for each IFE concept in Section B	
	generated by the working groups and subgroups (separate into generic and	
	driver-specific discussions for each working group area). Next describe a 3-5	
	year research program that addresses the critical issues in a prioritized, cost-	
	effective fashion For items 2-5, specifically present goals of near-term	
	development plan that would provide basis for IRE construction decision.	
4.3.1.0.	Summary of Critical Issues (10 pp)	Bangerter
4.3.1.1.	Target Physics (2 pp)	Bangerter
4.3.1.2.	IFE Chamber and Target Technology (2 pp)	Bangerter
4.3.1.3.	Driver Physics and Technology (4 pp)	Bangerter
4.3.1.4.	Interface Issues (2 pp)	Bangerter
4.3.2.0.	Target Physics Plan (3 pp = 1 p direct drive, 1 p indirect drive, 1 pp fast	Bangerter
	ignitor)	

4.3.3.0.	IFE Chamber and Target Technology Plans (3 pp = 1 p liquid chambers, 1 p		Bangerter
	dry chambers, 1 p targets)		C
4.3.4.0.	Driver Physics and Technology Plan (4 pp. = 1 p. each driver type)		Bangerter
4.3.5.0.	Other pre-IREs R&D (integration/interface items not covered in 2-4 above) (2		Bangerter
	pp)		
4.3.6.0.	IREs (including supporting technology activities with goals that would provide		Bangerter
	basis for ETF construction decision) (4 $pp = 1 p$ each driver type)		
5.0.0.0.	Appendices	MFE.*,	Co-chairs
		IFE.*	
5.1.0.0.	2002 Snowmass organization, process, etc.	co-chairs]	Co-chairs
5.2.0.0.	Integrated MFE and IFE matters	Co-chairs	Co-chairs
5.3.0.0.	MFE working group reports	MFE.*	Prager
5.3.1.0.	Physics issues of MFE burning plasmas	MFE.P*	Prager
5.3.1.1.	Wave-particle interactions	MFE.P1	Prager
5.3.1.2.	Energetic particles/alpha-physics	MFE.P2	Prager
5.3.1.3.	MHD	MFE.P3	Prager
5.3.1.4.	Transport	MFE.P4	Prager
5.3.1.5.	Boundary physics	MFE.P5	Prager
5.3.2.0.	Technology issues of MFE burning plasma next steps	MFE.T*	Baker
5.3.2.1.	Magnets	MFE.T1	Baker
5.3.2.2.	PFC/heat removal	MFE.T2	Baker
5.3.2.3.	Heating/current drive	MFE.T3	Baker
5.3.2.4.	Vacuum vessel/remote handling	MFE.T4	Baker
5.3.2.5.	Safety/tritium/materials	MFE.T5	Baker
5.3.2.6.	Costing	MFE.T6	Baker
5.3.3.0.	Experimental approach and objectives	MFE.E*	Taylor
5.3.3.1.	Diagnostics	MFE.E1	Taylor
5.3.3.2.	Integrated scenarios/ignition physics/burn control	MFE.E2	Taylor
5.3.3.3.	Physics operations	MFE.E3	Taylor
5.3.3.4.	Development path	MFE.E4	Taylor

5.3.4.0.	Relation between ICCs and tokamak burning plasmas	MFE.B4	Nevins
5.3.5.0.	Approaches	MFE.B*	Nevins
5.3.5.1.	FIRE	MFE.B1	Nevins
5.3.5.2.	Ignitor	MFE.B2	Nevins
5.3.5.3.	ITER	MFE.B3	Nevins
5.4.0.0.	IFE working group reports	IFE.*	Nevins
6.0.0.0.	Attachments [unlimited pages]	all	