

Aspects and Applications of Non-Axisymmetric Coils on KSTAR

Y.M. Jeon

On behalf of

S.W. Yoon, J.H. Kim, S.H. Hahn, W.C. Kim, Y.K. Oh, Jong-Gu Kwak, W.H. Ko, S.G. Lee, J.G. Bak, K.D. Lee, Y.U. Nam, J.Y. Kim, H.L. Yang, H.K. Kim and KSTAR team *National Fusion Research Institute (NFRI), Korea*

in collaborations with

Princeton Plasma Physics Laboratory, USA (J.-K. Park) General Atomics, USA (D.A. Humphreys, M. Walker, A. Welander) Columbia University, USA (S.A. Sabbagh, Y.S. Park)

> 2011.11.21 General Atomics, San Diego, USA 16th Workshop on MHD Stability Control

1. Overview of 3D Field Coils in KSTAR

2. Applications 2-1. Axisymmetric Applications 2-2. 3D (Non-axisymmetric) Applications - ELM suppression by n=1 RMP

3. Summary

1. Overview of 3D Field Coils in KSTAR

2. Applications 2-1. Axisymmetric Applications 2-2. 3D (Non-axisymmetric) Applications ELM suppression by n=1 RMP

3. Summary

KSTAR Has A Versatile In-Vessel Control Coil (IVCC) System Inside Vacuum Vessel

* H.K. Kim, H.L. Yang, et al., Fus. Eng. Design 84 (2009)

•Toroidally segmented 3D shaped coil system (1) Combining axisymmetric and non-axisymmetric field coils (2) Easier installation and maintenance

Applicable to Axisymmetric and Non-Axisymmetric Magnetic Applications

Vertical stability control (IVC), fast radial control (IRC)
 Non-axisymmetric (3D) applications
 Field error corrections (FEC), RWM, RMP etc

Full IVCC System Installed in 2010

Full IVCC System Installed in 2010

1. Overview of 3D Field Coils in KSTAR

2. Applications 2-1. Axisymmetric Applications 2-2. 3D (Non-axisymmetric) Applications ELM suppression by n=1 RMP

3. Summary

Successful Vertical Stabilizations of Highly Shaped Plasmas by IVC (κ ~1.85 and δ ~1.0)

• Led to early achievement of first H-mode (2010)

Even LSN Plasmas Enforced by IVC Were Well Controlled

KSTAR SN-Shot (#4137)

- For LSN shaping, plasma pushed down by ~10cm using IVC
 I_{IVC}~2.0kA/t applied to hold it
- Well controlled even though its worse field curvature

2011-11-21

Integrated Shape Control Combined with IRC Can Enhance Control Performance Significantly

- IRC is not essential component, but ...
- Can enhance shape control performance significantly
- Improved shape control=
 - "Fast R_p control by IRC"
 - + "isoflux control with M_{ii}-decoupling"
- Example: All volume shifted by ∆R=+2cm

→ IRC is on preparation for use in 2012

1. Overview of 3D Field Coils in KSTAR

2. Applications

2-1. Axisymmetric Applications 2-2. 3D (Non-axisymmetric) Applications ELM suppression by n=1 RMP

3. Summary

KSTAR Can Provide Wide Spectra of 3D Magnetic Perturbations

- 3-by-4 3D field coils available having 2 turns for each
 - all internal and segmented with saddle loop configurations
 - n=1 and 2 applicable
- Wide spectra of magnetic perturbations are possible
 - Poloidal helicity change for n=1
 - Even/odd parity change for n=2

RWM Controls Are Under Design and Study : Cu-Passive Stabilizer + RWM coils $\rightarrow \beta_{N,Wall}(\sim 5.0)$

Applicable Spectra of n=1 and n=2 MP

n=1, mid-FEC alone

Non-Axisymmetric Plasma Responses Were Investigated Using Two Different Phasings

* J.-K. Park, Y.M. Jeon, et al., in preparation for publication

- Two different phasings (+90 and -90) of the n=1 fields were applied to Ohmic discharges (I_P =400kA, BT=2.0T)
 - The +90 phasing induced a locking and disruption with I_{FEC} ~600A/turn
 - The -90 phasing caused only a slight braking of rotation

¹⁶th Workshop on MHD Stability Control - Y.M. Jeon

Non-Axisymmetric Plasma Responses Were Found In +90 Phasing By Locking

- A small non-axisymmetry was found in +90 phasing, by applying two different toroidal phases
 - Locking threshold I_{FEC} ~1kA/turn for 0 phase, I_{FEC} ~1.2kA/turn for 180 phase

➔ A small intrinsic error-field (~100A) found in KSTAR

2011-11-21

1. Overview of 3D Field Coils in KSTAR

2. Applications

2-1. Axisymmetric Applications

2-2. 3D (Non-axisymmetric) Applications - ELM suppression by n=1 RMP

3. Summary

ELMs Suppressed by n=1 MPs in KSTAR 2011

- COMPASS-D (n=1)
- DIII-D
- JET
- NSTX
- MAST
- ASDEX-U

triggered (2001) suppressed (2004)

mitigated (2007) triggered (2010) mitigated (2011) mitigated (2011)

We are adding ...

• KSTAR

(n=1)

(n=3)

(n=3)

(n=3)

(n=2)

(n=1, 2)

Suppressed (2011)

* Y.M. Jeon, J.-K. Park, et al., submitted to PRL (Nov 05, 2011)

2011-11-21

16th Workshop on MHD Stability Control

KSTAR-005947

ELMs Suppressed For the First Time by n=1 MP (+90)

- +90 phased n=1 MP suppressed ELMs -In JET, ELM mitigated by n=1 (Y.Liang, PRL, 2007)
- Density (~10%) pumping out initially.
 Then, increased when ELM suppressed
- Stored energy drop by ~8% initially. Then slightly increased or sustained when ELM suppressed
- Rotation decreased (~10%) initially.
 Then sustained when ELM suppressed
- Te/Ti changes were relatively small
- Two distinctive phases observed (1)ELM excitation phase (2)ELM suppression phase

Threshold FEC Current for ELM Suppression

 Note that there was no clear change of ELM size on transition (excitation → suppression), while the ELM frequency decreased dramatically

2011-11-21

ELMs Suppressed For the First Time by n=1 MP (+90)

- +90 phased n=1 MP suppressed ELMs - In JET, ELM mitigated by n=1 (Y.Liang, PRL, 2007)
- Density (~10%) pumping out initially.
 Then, increased when ELM suppressed
- Stored energy drop by ~8% initially. Then slightly increased or sustained when ELM suppressed
- Rotation decreased (~10%) initially.
 Then sustained when ELM suppressed
- Te/Ti changes were relatively small
- Two distinctive phases observed (1)ELM excitation phase (2)ELM suppression phase

Mid-FEC May Responsible for ELM-Excitation

ELMs Were Suppressed Rather Than Mitigated

16th Workshop on MHD Stability Control - Y.M. Jeon

2011-11-21

24

Unusual Pedestal Evolutions Observed Suggesting Edge Transport Change by MP

Observations are ...

- Pedestal buildup saturated in the intermediate level
- When destabilized, it resume pedestal build-up until the original threshold level.
- After crash, it became back to the original crashed level
- Edge stability seems to be not much changed

Experimental Evidence for Edge Transport Change by MPs -> Saturation of Pedestal Evolution

Specific Changes of Magnetic Fluctuation May Be A Clue Or Evidence for Edge Transport Change

ELM-suppressed

-Fluctuation rising -Mid-plane dominant -Broad (not specific)

spectrum

ELM-excited

-Fluctuation reduced -both midplane and divertor

Vacuum Analysis for n=1 Magnetic Perturbations

IPEC With Plasma Responses Predicts Somewhat Differently

Experimental Observations for Wide MP Spectra

Variety of ELM responses to different MP spectra
Various ELM controllability of MPs

Occasionally, $H \rightarrow L$ Transition and Locking Observed Instead of ELM-Suppression, Responding to n=1 MPs

- Mode locking was one of expected plasma responses to n=1 MP
- A key difference in H→L/Locked discharges compared with ELMsuppressed ones is the larger increase of edge Te in H-mode by a factor of ~2.

May correlated with edge collisionality

Strong Magnetic Braking by n=1 MP Observed : Complete Locking Without Killing Plasmas

ELMs Triggered by n=2 With Odd Parity

- Two ELM-free H-mode periods
- n=2 with odd-parity triggered type-I ELMs
- Vtor didn't changed by L/H transition
 → strong mag. braking
- Ref to ELM triggering on NSTX by n=3 MP

Summary And Discussion

1. Versatile IVCC system in KSTAR

- Axisymmetric + non-axisymmetric (n=1, 2)
- Three poloidal coils \rightarrow wide spectra of MPs
- Various applications: IVC, IRC + FEC, RWM, RMP

2. ELM control by applying non-axisymmetric MPs

- ELMs suppressed completely by n=1 MP
- Various ELM responses
 - : suppression, excitation, mitigation, locking, triggering
- Saturated pedestal evolutions with specific change of mag. fluctuations
- Strong mag. braking by n=1 MPs

3. Worth to note that ...

- Variety of ELM responses to different mag. spectra
- Wide controllability of ELMs by applying MPs
- Important to understand what made different responses such as

mitigation $\leftarrow \rightarrow$ excitationsuppression $\leftarrow \rightarrow$ triggering