Aspects and Applications of Non-Axisymmetric Coils on KSTAR

Y.M. Jeon
On behalf of
National Fusion Research Institute (NFRI), Korea
in collaborations with
Princeton Plasma Physics Laboratory, USA (J.-K. Park)
General Atomics, USA (D.A. Humphreys, M. Walker, A. Welander)
Columbia University, USA (S.A. Sabbagh, Y.S. Park)

2011.11.21
General Atomics, San Diego, USA
16th Workshop on MHD Stability Control
1. Overview of 3D Field Coils in KSTAR

2. Applications
 2-1. Axisymmetric Applications
 2-2. 3D (Non-axisymmetric) Applications
 - ELM suppression by n=1 RMP

3. Summary
1. Overview of 3D Field Coils in KSTAR

2. Applications
 2-1. Axisymmetric Applications
 2-2. 3D (Non-axisymmetric) Applications
 - ELM suppression by n=1 RMP

3. Summary
KSTAR Has A Versatile In-Vessel Control Coil (IVCC) System Inside Vacuum Vessel

- Toroidally segmented 3D shaped coil system
 1. Combining axisymmetric and non-axisymmetric field coils
 2. Easier installation and maintenance

Applicable to Axisymmetric and Non-Axisymmetric Magnetic Applications

- **Axisymmetric applications**
 - Vertical stability control (IVC), fast radial control (IRC)
- **Non-axisymmetric (3D) applications**
 - Field error corrections (FEC), RWM, RMP etc
Full IVCC System Installed in 2010

Passive Stabilizer
Full IVCC System Installed in 2010
1. Overview of 3D Field Coils in KSTAR

2. Applications
 2-1. Axisymmetric Applications
 2-2. 3D (Non-axisymmetric) Applications
 - ELM suppression by n=1 RMP

3. Summary
Successful Vertical Stabilizations of Highly Shaped Plasmas by IVC ($\kappa \sim 1.85$ and $\delta \sim 1.0$)

- $\kappa \sim 1.85$ & $\delta \sim 1.0$ achieved successfully
Even LSN Plasmas Enforced by IVC Were Well Controlled

For LSN shaping, plasma pushed down by ~10cm using IVC
- $I_{ivc} \sim 2.0 \text{kA/t}$ applied to hold it
- Well controlled even though its worse field curvature
Integrated Shape Control Combined with IRC Can Enhance Control Performance Significantly

- IRC is not essential component, but ...
- Can enhance shape control performance significantly
- Improved shape control =
 “Fast R_p control by IRC”
 + “isoflux control with M_{ij}-decoupling”
- Example: All volume shifted by $\Delta R = +2$ cm

⇒ IRC is on preparation for use in 2012
1. Overview of 3D Field Coils in KSTAR

2. Applications
 2-1. Axisymmetric Applications
 2-2. 3D (Non-axisymmetric) Applications
 - ELM suppression by n=1 RMP

3. Summary
KSTAR Can Provide Wide Spectra of 3D Magnetic Perturbations

- **3-by-4 3D field coils available having 2 turns for each**
 - all internal and segmented with saddle loop configurations
 - n=1 and 2 applicable

- **Wide spectra of magnetic perturbations are possible**
 - Poloidal helicity change for n=1
 - Even/odd parity change for n=2

Main applications of 3D fields
1. Resistive Wall Mode Control
2. Error Field Correction
3. RMP/NRMP Physics Study
RWM Controls Are Under Design and Study

Cu-Passive Stabilizer + RWM coils $\rightarrow \beta_{N,\text{Wall}}(\sim 5.0)$

In VALEN model

* Y.S. Park, S.A. Sabbagh, et al., Nucl. Fusion 51 (2011)

Middle FEC

Controlled within ~8ms

MISK predicts relatively large rotations are required for RWM stability
Applicable Spectra of $n=1$ and $n=2$ MP

- **n=1, -90 phase**
 - top:
 - mid:
 - bot:

- **n=1, 0 phase**
 - top:
 - mid:
 - bot:

- **n=1, +90 phase**
 - top:
 - mid:
 - bot:

- **n=1, 180 phase**
 - top:
 - mid:
 - bot:

- **n=1, mid-FEC alone**
 - top:
 - mid:
 - bot:

- **n=2, even parity**
 - top:
 - mid:
 - bot:

- **n=2, odd parity**
 - top:
 - mid:
 - bot:

2011-11-21

16th Workshop on MHD Stability Control - Y.M. Jeon
Non-Axisymmetric Plasma Responses Were Investigated Using Two Different Phasings

* J.-K. Park, Y.M. Jeon, et al., in preparation for publication

- Two different phasings (+90 and -90) of the n=1 fields were applied to Ohmic discharges ($I_P=400\,\text{kA}$, $BT=2.0\,\text{T}$)
 - The +90 phasing induced a locking and disruption with $I_{\text{FEC}}\sim600\,\text{A/turn}$
 - The -90 phasing caused only a slight braking of rotation

\[\phi \quad \theta \quad \text{B-field} \]

\[\begin{array}{cccccc}
+ & + & - & - & - \\
- & + & + & - & - \\
- & - & + & + & + \\
+ & + & + & - & - \\
- & + & + & + & + \\
+ & + & - & - & - \\
\end{array} \]

\[+90\,\text{(Resonant)} \]

\[\begin{array}{cccccc}
+ & + & - & - & - \\
- & + & + & - & - \\
- & - & + & + & + \\
+ & + & + & - & - \\
- & + & + & + & + \\
+ & + & - & - & - \\
\end{array} \]

\[-90\,\text{(Non-resonant)} \]
Non-Axisymmetric Plasma Responses Were Found In +90 Phasing By Locking

- A small non-axisymmetry was found in +90 phasing, by applying two different toroidal phases

 - Locking threshold $I_{\text{FEC}} \sim 1\text{kA/turn}$ for 0 phase, $I_{\text{FEC}} \sim 1.2\text{kA/turn}$ for 180 phase

 - A small intrinsic error-field ($\sim 100\text{A}$) found in KSTAR

\[\Rightarrow \text{A small intrinsic error-field ($\sim 100\text{A}$) found in KSTAR} \]
1. Overview of 3D Field Coils in KSTAR

2. Applications
 2-1. Axisymmetric Applications
 2-2. 3D (Non-axisymmetric) Applications
 - ELM suppression by n=1 RMP

3. Summary
ELMs Suppressed by n=1 MPs in KSTAR 2011

- COMPASS-D \((n=1)\) triggered (2001)
- DIII-D \((n=3)\) suppressed (2004)
- JET \((n=1, 2)\) mitigated (2007)
- NSTX \((n=3)\) triggered (2010)
- MAST \((n=3)\) mitigated (2011)
- ASDEX-U \((n=2)\) mitigated (2011)

We are adding …

- KSTAR \((n=1)\) Suppressed (2011)

ELMs Suppressed For the First Time by n=1 MP (+90)

- +90 phased n=1 MP suppressed ELMs
 - In JET, ELM mitigated by n=1 (Y.Liang, PRL, 2007)

- Density (~10%) pumping out initially. Then, increased when ELM suppressed

- Stored energy drop by ~8% initially. Then slightly increased or sustained when ELM suppressed

- Rotation decreased (~10%) initially. Then sustained when ELM suppressed

- Te/Ti changes were relatively small

- Two distinctive phases observed
 (1) ELM excitation phase
 (2) ELM suppression phase
Threshold FEC Current for ELM Suppression

- $I_{FEC,\text{threshold}} \geq 0.75 \text{ kA/t}: \text{marginal suppression}
- > 1.00 \text{ kA/t}: \text{full suppression}
(vacuum analysis predicted $\geq 1.00 \text{ kA/t}$)

- $\Delta \beta_p$ is dependent on I_{FEC}
(similar $\Delta n_e, \Delta W_{\text{tot}}, \Delta V_\phi, \ldots$)

- Note that there was no clear change of ELM size on transition
(excitation \rightarrow suppression), while the ELM frequency decreased dramatically
ELMs Suppressed For the First Time by $n=1$ MP (+90)

- +90 phased $n=1$ MP suppressed ELMs
 - In JET, ELM mitigated by $n=1$ (Y.Liang, PRL, 2007)

- Density (\sim10%) pumping out initially. Then, increased when ELM suppressed

- Stored energy drop by \sim8% initially. Then slightly increased or sustained when ELM suppressed

- Rotation decreased (\sim10%) initially. Then sustained when ELM suppressed

- Te/Ti changes were relatively small

- Two distinctive phases observed
 1) ELM excitation phase
 2) ELM suppression phase
Mid-FEC May Responsible for ELM-Excitation

- ELMs excitation observed as expected
- Similar evolutions of global parameters with those on the initial ELM-excited phase
- Note that ELM-excitation should be distinguished from ELM-triggering
- Therefore, mixed MPs made two phases ELMs i.e. ‘mid-FEC alone’ + ‘n=1, +90’
ELMs Were Suppressed Rather Than Mitigated

#6123

$I_{FEC} = 1.9 \text{kA/t}$

$A \approx 2.74 \text{s}$
$m \approx 40$
$n \approx 6$

$B \approx 3.62 \text{s}$
$m \approx 25$
$n \approx 4$

$C \approx 4.31 \text{s}$
ELM-free

* G.S. Yun, APS invited, YI2 (2011)
Unusual Pedestal Evolutions Observed Suggesting Edge Transport Change by MP

• **Observations are ...**
 - Pedestal buildup saturated in the intermediate level
 - When destabilized, it resume pedestal build-up until the original threshold level.
 - After crash, it became back to the original crashed level
 - Edge stability seems to be not much changed
Experimental Evidence for Edge Transport Change by MPs ➔ Saturation of Pedestal Evolution

- **Crash**
- Gradual build-up Of pedestal

![Graphs showing Te_edge comparison](image)

- ELM-suppessed
- Saturated build-up

* RMP fully applied in this time period
Specific Changes of Magnetic Fluctuation May Be A Clue Or Evidence for Edge Transport Change

ELM-suppressed
- Fluctuation rising
- Mid-plane dominant
- Broad (not specific) spectrum

ELM-excited
- Fluctuation reduced
- Both midplane and divertor
Vacuum Analysis for n=1 Magnetic Perturbations

-90 Phasing ($\sigma_{CH} \sim 0.04$)
Non-Resonant (NRMP)

0 Phasing ($\sigma_{CH} \sim 0.08$)

90 Phasing ($\sigma_{CH} \sim 0.27$)

180 Phasing ($\sigma_{CH} \sim 0.22$)

Midplane ($\sigma_{CH} \sim 0.17$)

Chirikov by n=1 SFEC with 3.6kAt

* σ_{CH} = stochastic layer width in the edge

2011-11-21
16th Workshop on MHD Stability Control - Y.M. Jeon
IPEC With Plasma Responses Predicts Somewhat Differently

• 180 phase is the best for Chirikov
• 180 phase may have strongest rotation damping
Experimental Observations for Wide MP Spectra

• Variety of ELM responses to different MP spectra
• Various ELM controllability of MPs

→ ELM Suppression
→ H/L Back-transition / Locking
→ ELM (strong) mitigation ~ JET n=1
→ ELM Excitation
→ ELM Excitation
Occasionally, H→L Transition and Locking Observed Instead of ELM-Suppression, Responding to n=1 MPs

- Mode locking was one of expected plasma responses to n=1 MP
- A key difference in H→L/Locked discharges compared with ELM-suppressed ones is the larger increase of edge Te in H-mode by a factor of ~2.
- May correlated with edge collisionality
Strong Magnetic Braking by n=1 MP Observed: Complete Locking Without Killing Plasmas

![Graphs showing magnetic braking and plasma behavior](image)

Graph 1:
- Divertor and Midplane plasma profiles with time evolution.
- CES profile with time and major radius.

Graph 2:
- Heat deposition and magnetic field profiles.
- 2/1 tearing instability markers.

Data Points:
- Ti [keV] and Vt [km/sec] at different times and major radii.
- P_{ECH} and P_{NBI} = 1.4 MW.

Key Points:
- Enhanced braking without plasma killing.
- CES profile indicating temperature and velocity changes.
- 2/1 tearing stability analysis.
ELMs Triggered by $n=2$ With Odd Parity

- Two ELM-free H-mode periods
- $n=2$ with odd-parity triggered type-I ELMs
- V_{tor} didn’t changed by L/H transition \Rightarrow strong mag. braking
- Ref to ELM triggering on NSTX by $n=3$ MP
1. Versatile IVCC system in KSTAR
 - Axisymmetric + non-axisymmetric (n=1, 2)
 - Three poloidal coils \(\rightarrow \) wide spectra of MPs
 - Various applications: IVC, IRC + FEC, RWM, RMP

2. ELM control by applying non-axisymmetric MPs
 - ELMs suppressed completely by n=1 MP
 - Various ELM responses
 : suppression, excitation, mitigation, locking, triggering
 - Saturated pedestal evolutions with specific change of mag. fluctuations
 - Strong mag. braking by n=1 MPs

3. Worth to note that ...
 - Variety of ELM responses to different mag. spectra
 - Wide controllability of ELMs by applying MPs
 - Important to understand what made different responses such as
 mitigation \(\leftrightarrow \) excitation
 suppression \(\leftrightarrow \) triggering