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Conventional EF Correction is a “destructive test” based on
low-density LMs and needing 3-4 discharges

1.0 Ohmic heating only, no error field correction 124988
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Locked Modes (LMs) lock to the TOTAL Error Field (EF)

.e. to the resultant of known Magnetic Pejturbati'Ons____(MPs) and unknown EFs
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Uniform MP rotation in presence of static EF
causes non-uniform mode rotation
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Discrepancy between applied I-coil phase and actual LM
phase leads to set of equations for EF Amplitude and phase

« 2N equations in 2+N unknowns, including

141055 141060 141062 141063 EF amplitude and phase.
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Animation shows how static n=1 EF and rotating n=1 MP
nearly canceling out lead to non-uniform rotation

EF {solid) and rRMP (dashed)
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Known (measured) LM locks to resultant of known (applied) MP

and unknown EF.
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Now uniform and non-uniform rotation during LM control
are clear

A

lock

IA. (solid
b

 dOppgfdOgye

! Uniform |

>

| < 0_50__/;

i on-uniform ]

- < >

/ \ Yo, -

. ) 6*-..._

I | I : |

0.07."\.‘...‘ ....=+.=....\....." 0.07"...‘.‘\.....‘.‘|...‘.‘.‘|H.‘.‘.‘7
0 90 180 270 360 0 90 180 270 360

[ Ormp-® g] (deg) [ Ormp- 0 g¢] (deg)

Compare uniform and non-uniform rotation in slide 5

Other application: Sustained Rotation of LMs and NTMs



Spiraling n=1 field scans in 2D. A, is the smallest A yielding a complete

revolution. ¢, IS phase opposite to phase of max accel./deceleration

2.0

1.5

Armp/Aer
©°

0.5

0.01

Ao/ Agk (Sﬁ“?) alr}d’E(lblock q)EF] (dashed)

\ | \ Y '
!cé‘ KB

'/ /\ RTHT
-|//\/‘ :“’\’\
f’/ ‘1/ /N WII;Y A\ . ’?' 7

- 1 b :ﬁj:\_,\’ \\ e

| / ‘[_r |\ 320'\; !:
7'\ / I'XY'LP | 7 ‘:

Sl - er”‘-'wf, 1
_:—ﬁ...‘:.‘...‘g"f‘.g.‘.‘..\.‘ e

90 180 270 360

[ Ormp-® g] (deg)

Other advantages:
* spiral can “cautiously” approach larger and larger LMs. No need for MP > EF.
* can be extended to multi-n EF by looking at multiple features and transitions.
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Give me a compass and a magnet and
| will tell you where the other magnet(s) is (are).

...and how strong they are
and what multi-poles are they.
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Which mode should be used,
for proof of principle?

* Mode does not need to be preexistent and rotating

— At DIlI-D, LM originated from rotating precursor (NTM) induced by
S ramp in low rotation plasma - ITER

— In few discharges, LM from EF penetration, w/o rotating precursor

* Does not need to be a LM or QSM (10-100Hz)
— Can be a TM or RWM (next slide)

« Mode must:
— ...interact with EF - potential energy
— Mode and EF depend on ¢
— There is a ¢ minimizing the potential energy
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Need to destabilize a mode (preferably saturated)
and use it as a probe for EF. Which mode?

Fast-rotating TM* Growing RWM Marginal RWM | | Saturated, driven RWM
n<-12 -11<n<-3 [-2<n<+7 n=+8
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Modes have pros and cons

Fast-rotating TM (~10kHz) [n=-12]
— Shielding makes it impossible to couple rotating MP to fast mode
— Interaction of fast TM with slow/static MP & EF - magnetic braking

Unstable RWM [-11 < n < -3]

— Mode growth is in competition with other effects on amplitude (rRMP,
EF). Difficult to extract effect of EF.

Exp. with n=+1,2,3
Marginal RWM [-2 < n < +7] > and n=-1
— Decays or grows slowly = ~constant - easier to extract effect of EF

Exp. with n=+10

v

Stable RWM [n = +8]
— Stable
— Amplifies EF - easier to measure in sensor coils

— Decays rapidly as soon as drive (rRMP+EF) is zeroed - also an
indicator of good EFC




Multipole-multipole interaction is a
generalization of dipole-dipole interaction

Magnetic dipole of
the rotating mode
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4x32 control coils apply: 1) known static EF and
I1) rotating MP to “drag” mode and “probe” EF.

Vacuum vessel
Resistive shell
4x32 active coils
4x32 sensor coils
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Time-evolution of mode amplitude and phase can be
predicted/interpreted from Newcomb equation for thin shell

7b, — —b, = bzt where b, =EF +static RMPs +rotating RMPs:
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Ad hoc n=+10 EF (~4G, A=0.2 ¢=0) correctly

characterized (A=0.22%0.02, ¢=1.1rad).
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Smaller applied EF (~1G) also give
expected response
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Longer discharge confirms good EFC
(and can be used to optimize the phase)

Duration of discharge (ms)
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Better match of ¢-r makes mode rotation
more uniform
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Summary & Conclusions

* Applying a uniformly rotating RMP of constant amplitude
results in a mode (LM, stable or unstable RWM, etc.)
rotating non-uniformly and varying in amplitude.

— Dueto EF
— Use non-uniform rotation and amplitude modulation to diagnose EF

« n=+10 stable external kink forced to rotate at 50Hz correctly
measured known (applied) n=+10 EFs of 1-4G

« Evidence of good EFC from longer discharge and more
uniform rotation

* Next test at Extrap-T2R: n=-1
 ITER: small n=1 LM?



Backup slides



Three approaches were explored

« Everything in vacuum
— No mode - 2 entities (EF and rRMP) instead of 3
(can’t test rotation & modulation of the 3 in presence of other 2)
— Direct measurement of how the two compensates each other.
Only works if static EF is turned on during shot (otherwise not visible to
saddle loops) and if MP rotates slowly relative to wall 7
« Everything in open loop
— Short discharges (~12-20ms)
— Tried with machine-EF at n=+2
— Clear oscillations - rotations transition observed

* Mode of interest in open loop, other in f/back

— Longer discharges (40-70ms)
— Tried with “phantom” EF at n=+3 (growing RWM)
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In open-loop, constant-amplitude request
doesn’t exactly yield constant amplitude
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Mode locks to Error Field, not to Wall

Torgue exerted by resistively delayed image currents in the wall:

-0 for ®,,20

wall —
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Torque exerted by EF trying to align magnetic dipole to it:
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Ultimately, technique was tested on
intrinsic n=10 EF
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Measurements at n=-1 need to be

analyzed
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