
Recent and Upcoming RWM Experiments on HBT-EP

Jeffrey P. Levesque

with the HBT-EP Group:

S. Angelini, J. Bialek, P.J. Byrne, B.A. DeBono, P. Hughes, B. Li, M.E. Mauel,
D.A. Maurer, G.A. Navratil, Q. Peng, N. Rath, D. Rhodes, D. Shiraki, and C. Stoafer

November 21, 2011

Outline

- Motivation for multimode research
- Recent major results
 - Passive multimode measurements
 - Resonant magnetic perturbations (RMPs)
- Upcoming experiments
 - Plasma shaping to enhance multimode spectrum
 - Multimode feedback with GPU-based control
 - Control coil modularity studies
 - Ferritic resistive wall mode

Outline

- Motivation for multimode research
- Recent major results
 - Passive multimode measurements
 - Resonant magnetic perturbations (RMPs)
- Upcoming experiments
 - Plasma shaping to enhance multimode spectrum
 - Multimode feedback with GPU-based control
 - Control coil modularity studies
 - Ferritic resistive wall mode

Motivation: Understand multimode plasma response to 3D magnetic perturbations

- Understanding 3D field effects is important for predicting and optimizing tokamak performance
 - ELM mitigation, error field correction, RWM feedback
- Modular control coils may distort single mode response and lead to non-rigid (“**multimode**”) behavior
 - Small control coils will couple to other stable or unstable modes (sideband harmonics)
 - Can lead to loss of feedback control, complicate resonant plasma response, and impact plasma performance
- HBT-EP’s mission: **Measure and control 3D edge magnetic fields with high detail and accuracy in a tokamak**

New adjustable walls and magnetic diagnostics in HBT-EP allow high resolution excitation and detection of plasma modes

Outline

- Motivation for multimode research
- Recent major results
 - Passive multimode measurements
 - Resonant magnetic perturbations (RMPs)
- Upcoming experiments
 - Plasma shaping to enhance multimode spectrum
 - Multimode feedback with GPU-based control
 - Control coil modularity studies
 - Ferritic resistive wall mode

High resolution space-time measurements reveal complicated mode dynamics

High-field-side
toroidal array

Diametrically opposed
poloidal arrays

Biorthogonal Decomposition (BD) yields empirical basis functions derived from measurements

- Singular Value Decomposition splits fluctuation data into spatial and temporal modes

$$A = U\Sigma V^\dagger$$

$$\begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ s_1 & s_2 & \cdots & s_n \\ \downarrow & \downarrow & & \downarrow \end{pmatrix} = \begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ u_1 & u_2 & \cdots & u_n \\ \downarrow & \downarrow & & \downarrow \end{pmatrix} \begin{pmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_n \end{pmatrix} \begin{pmatrix} \leftarrow & v_1 & \rightarrow \\ \leftarrow & v_2 & \rightarrow \\ \vdots & & \\ \leftarrow & v_n & \rightarrow \end{pmatrix}$$

Fluctuation signals Temporal modes Spatial modes

where $u_i \cdot u_j = \delta_{ij}^i$, $v_i \cdot v_j = \delta_{ij}^i$

- Traveling waves are decomposed into *sine* and *cosine* components

$$\cos(n\phi + \omega t) = \underbrace{\cos(n\phi)}_{\text{Spatial}} \underbrace{\cos(\omega t)}_{\text{Temporal}} - \underbrace{\sin(n\phi)}_{\text{Spatial}} \underbrace{\sin(\omega t)}_{\text{Temporal}}$$

$$c_1 \cos(n\phi) + c_2 \sin(n\phi) = A \cos(n\phi + \delta)$$

- BD Technique is robust against sensor gain/alignment errors

High resolution space-time measurements reveal complicated mode dynamics

BD analysis shows good separation of rotating modes in HBT-EP discharges

- Unambiguous pairing of 1st (dominant) mode
- 2nd mode pair almost always well defined
- 3rd mode pair is harder to interpret, but is sometimes coherent

The $m/n=6/2$ kink can evolve independently of the $3/1$ mode, implying the need for multimode control

Outline

- Motivation for multimode research
- Recent major results
 - Passive multimode measurements
 - Resonant magnetic perturbations (RMPs)
- Upcoming experiments
 - Plasma shaping to enhance multimode spectrum
 - Multimode feedback with GPU-based control
 - Control coil modularity studies
 - Ferritic resistive wall mode

RMPs applied to lock external kink and study mode characteristics

- Static $-3/1$ radial field is applied near when edge q crosses 3
- Toroidal phase of RMP rapidly changed by 180° (“phase-flip”) after 0.5 ms

Three regimes of plasma response are observed when applying 3/1 RMPs

- Large applied fields lead to disruption for $B_r^{3/1}/B_T > 3.5 \times 10^{-3}$
- Linear response is seen for $B_r^{3/1}/B_T < 1.5 \times 10^{-3}$
- For intermediate RMP strength $1.5 \times 10^{-3} < B_r^{3/1}/B_T < 3.5 \times 10^{-3}$,
 - Linear response seen for lower edge q
 - Saturated response seen for higher edge q near the $q=3$ resonance

Three regimes of plasma response are observed when applying 3/1 RMPs

- Large applied fields lead to disruption for $B_r^{3/1}/B_T > 3.5 \times 10^{-3}$
- Linear response is seen for $B_r^{3/1}/B_T < 1.5 \times 10^{-3}$
- For intermediate RMP strength $1.5 \times 10^{-3} < B_r^{3/1}/B_T < 3.5 \times 10^{-3}$,
 - Linear response seen for lower edge q
 - Saturated response seen for higher edge q near the $q=3$ resonance

Biased electrode used to change edge plasma rotation and kink mode response

- Natural rotation: $\omega\tau_w \sim 20$
 - Modes rapidly rotate compared to wall time
- Edge biasing induces $E \times B$ flow to change plasma rotation
- Mode can be accelerated or decelerated depending on sign of bias

Plasma response is enhanced and phase-shifted for lower plasma rotation

- RMP applied in the linear response regime, $B_r^{-3/1}/B_T = 10^{-3}$
- Phase difference of $\sim 90^\circ$ for slow versus fast plasma rotation
- Disruptions encountered at smaller applied fields for slower rotating plasmas

Outline

- Motivation for multimode research
- Recent major results
 - Passive multimode measurements
 - Resonant magnetic perturbations (RMPs)
- Upcoming experiments
 - Plasma shaping to enhance multimode spectrum
 - Multimode feedback with GPU-based control
 - Control coil modularity studies
 - Ferritic resistive wall mode

Upcoming experiments will focus on multimode control

- Shaping coil will be installed
 - Multimode spectrum will change
- Multimode feedback with GPU control
 - Fast parallel computations for multimode control
- Coil modularity studies
 - Effect of changing sidebands
- Ferritic resistive wall mode
 - Reactor relevance

Multimode spectrum will be enhanced with installation of shaping coil

- Simple coil geometry will facilitate installation
 - Zero-net-turns to minimize coupling with other coil systems
 - Low self-inductance simplifies bank design
- Small change to plasma boundary is compatible with existing diagnostics and control coils

Active feedback will be done using GPU-based control system

- Hardware details
 - Standard Linux host system
 - NVIDIA Tesla M2050 GPU
 - D-TACQ ACQ196 digitizer (input from sensors)
 - Two D-TACQ AO32 boards (output to control coils)
- Capabilities
 - 96 analog inputs, 16-bit resolution
 - Fast parallel processing with GPU
 - 448 computing cores, each running at 1.15 GHz
 - 64 analog outputs
 - Latency ~10µs

All components commercially available

Modular control coils allow study of significance of applied field sidebands

Ferritic wall components will allow study of Ferritic Resistive Wall Mode in a toroidal device

- Cylindrical model* used to estimate the effect of ferritic material on the RWM in HBT-EP

Major results and implications

- Structure of naturally occurring external kink modes is composed of multiple **independent** eigenmodes: $m/n=3/1$ and $6/2$
 - ITER and other future tokamaks will require multimode active control
- Application of resonant magnetic perturbations to plasmas having a pre-existing saturated $m/n=3/1$ kink exhibit mode locking of the external kink to the applied resonant field
 - Magnitude and phase of the plasma response is dependent on the edge q and plasma rotation
 - Locked plasma response is characterized by linear, saturated, and disruptive regimes, which depend on the edge q
- Upcoming HBT-EP experiments will continue to investigate multimode physics and control relevant to future devices, with plasma shaping, GPU-based control, and ferritic wall modes

EXTRA SLIDES

Plasma responds to resonant component of applied field as the applied helicity is changed

- Control coils used as sensors to determine the natural 3/1 mode structure
- Helicity of external field scanned by changing m for $n=1$ fields
 - Applied field projected onto the natural mode structure to determine **resonant component**
- Kink response matches the resonant component of the applied field

In the linear regime, kink plasma response is a maximum when near the 3/1 resonance

Next stage of feedback: Perturbed equilibrium control

- The RWM can be interpreted as a sequence of perturbed equilibria
 - RWM evolves much slower than the Alfvénic force-balance time scale
 - Evolution is caused by changing external fields (i.e. decaying wall currents), and the RWM is a transition of the plasma through different MHD equilibria
- Perturbed equilibrium control:
 - Control a specific 3D state, instead of just imposing axisymmetry or preselecting a rigid perturbation

