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Outline

• Motivation for multimode research

• Recent major results

– Passive multimode measurements

– Resonant magnetic perturbations (RMPs)

• Upcoming experiments

– Plasma shaping to enhance multimode spectrum

– Multimode feedback with GPU-based control

– Control coil modularity studies

– Ferritic resistive wall mode
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Motivation: Understand multimode plasma response to

3D magnetic perturbations

• Understanding 3D field effects is important for predicting and 
optimizing tokamak performance
– ELM mitigation, error field correction, RWM feedback

• Modular control coils may distort single mode response and lead to 
non-rigid (“multimode”) behavior
– Small control coils will couple to other stable or unstable modes 

(sideband harmonics)
• Can lead to loss of feedback control, complicate resonant plasma response, 

and impact plasma performance

• HBT-EP’s mission: Measure and control 3D edge magnetic fields 

with high detail and accuracy in a tokamak
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New adjustable walls and magnetic diagnostics in HBT-EP allow 

high resolution excitation and detection of plasma modes
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High resolution space-time measurements reveal

complicated mode dynamics
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Biorthogonal Decomposition (BD) yields empirical basis 

functions derived from measurements

• Singular Value Decomposition splits fluctuation data into spatial and 

temporal modes

• Traveling waves are decomposed into sine and cosine components

• BD Technique is robust against sensor gain/alignment errors

Spatial modes
Temporal modesFluctuation signals
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High resolution space-time measurements reveal

complicated mode dynamics
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BD analysis shows good separation of rotating modes

in HBT-EP discharges

• Unambiguous pairing of 1st (dominant) mode

• 2nd mode pair almost always well defined

• 3rd mode pair is harder to interpret, but is sometimes coherent
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The m/n=6/2 kink can evolve independently of the 3/1 mode, 

implying the need for multimode control

• Amplitude and phase 

of the 6/2 mode do not 

simply track with the 

3/1 mode

• Rapid 6/2 growth is 

often seen during 

periods of decreasing 

3/1 amplitude

Poloidal array 2
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RMPs applied to lock external kink

and study mode characteristics

• Static -3/1 radial field 

is applied near when 

edge q crosses 3

• Toroidal phase of 

RMP rapidly changed 

by 180° (“phase-flip”) 

after 0.5 ms
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Three regimes of plasma response are observed

when applying 3/1 RMPs

• Large applied fields lead to 

disruption for Br
3/1/BT > 3.5 x 10-3

• Linear response is seen for 

Br
3/1/BT < 1.5 x 10-3

• For intermediate RMP strength  

1.5 x 10-3 < Br
3/1/BT < 3.5 x 10-3,

– Linear response seen for lower 

edge q

– Saturated response seen for 

higher edge q near the q=3 

resonance
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Biased electrode used to change edge plasma rotation

and kink mode response

• Natural rotation: ωτw~ 20

– Modes rapidly rotate 

compared to wall time

• Edge biasing induces      

E x B flow to change 

plasma rotation

• Mode can be accelerated 

or decelerated depending 

on sign of bias

Natural rotation

Fast rotation

Slow rotation



17

Plasma response is enhanced and phase-shifted

for lower plasma rotation

• RMP applied in the linear 

response regime, Br
3/1/BT = 10-3

• Phase difference of ~90° for slow 

versus fast plasma rotation

• Disruptions encountered at 

smaller applied fields for slower 

rotating plasmas
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Upcoming experiments will focus on multimode control

• Shaping coil will be installed

– Multimode spectrum will change

• Multimode feedback with GPU control

– Fast parallel computations for multimode control

• Coil modularity studies

– Effect of changing sidebands

• Ferritic resistive wall mode

– Reactor relevance
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Multimode spectrum will be enhanced

with installation of shaping coil

• Simple coil geometry will facilitate installation

– Zero-net-turns to minimize coupling with other coil systems

– Low self-inductance simplifies bank design

• Small change to plasma boundary is compatible with existing 

diagnostics and control coils
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Active feedback will be done using GPU-based control system

• Hardware details

– Standard Linux host system

– NVIDIA Tesla M2050 GPU

– D-TACQ ACQ196 digitizer (input from sensors)

– Two D-TACQ AO32 boards (output to control coils)

• Capabilities

– 96 analog inputs, 16-bit resolution

– Fast parallel processing with GPU

• 448 computing cores, each running at 1.15 GHz

– 64 analog outputs

– Latency ~10µs

All components

commercially

available
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Modular control coils allow study of significance of

applied field sidebands

Small

Medium

Large
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Ferritic wall components will allow study of

Ferritic Resistive Wall Mode in a toroidal device

• Cylindrical model* used to estimate the effect of ferritic material on 

the RWM in HBT-EP

* Kurita et al., Nucl. Fus., 43, 949 (2003)
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Major results and implications

• Structure of naturally occurring external kink modes is composed of 

multiple independent eigenmodes: m/n=3/1 and 6/2

– ITER and other future tokamaks will require multimode active control

• Application of resonant magnetic perturbations to plasmas having a 

pre-existing saturated m/n=3/1 kink exhibit mode locking of the 

external kink to the applied resonant field

– Magnitude and phase of the plasma response is dependent on the edge 

q and plasma rotation

– Locked plasma response is characterized by linear, saturated, and 

disruptive regimes, which depend on the edge q

• Upcoming HBT-EP experiments will continue to investigate 

multimode physics and control relevant to future devices, with 

plasma shaping, GPU-based control, and ferritic wall modes
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EXTRA SLIDES
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Plasma responds to resonant component of applied field as 

the applied helicity is changed

• Control coils used as 

sensors to determine the 

natural 3/1 mode structure

• Helicity of external field 

scanned by changing m

for n=1 fields

– Applied field projected 

onto the natural mode 

structure to determine 

resonant component

• Kink response matches 

the resonant component 

of the applied field
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Next stage of feedback: Perturbed equilibrium control

• The RWM can be interpreted as a 

sequence of perturbed equilibria

– RWM evolves much slower than the 

Alfvénic force-balance time scale

– Evolution is caused by changing 

external fields (i.e. decaying wall 

currents), and the RWM is a transition of 

the plasma through different MHD 

equilibria

• Perturbed equilibrium control:

– Control a specific 3D state, instead of just imposing axisymmetry

or preselecting a rigid perturbation


