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Outline HBBEP

 Motivation for multimode research

 Recent major results
— Passive multimode measurements
— Resonant magnetic perturbations (RMPs)

« Upcoming experiments
— Plasma shaping to enhance multimode spectrum
— Multimode feedback with GPU-based control
— Control coil modularity studies
— Ferritic resistive wall mode
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Motivation: Understand multimode plasma response to
3D magnetic perturbations HBPEP

Understanding 3D field effects is important for predicting and
optimizing tokamak performance

— ELM mitigation, error field correction, RWM feedback

Modular control coils may distort single mode response and lead to
non-rigid (“ ") behavior
— Small control coils will couple to other stable or unstable modes
(sideband harmonics)

 Can lead to loss of feedback control, complicate resonant plasma response,
and impact plasma performance

HBT-EP’s mission:



New adjustable walls and magnetic diagnostics in HBT-EP allow
high resolution excitation and detection of plasma modes H@P

3 sets of 40 control coils
for modularity tests

High-resolution poloidal and radial
magnetic field sensors

20 adjustable
40 poloidal + 40 radial field sensors wall segments

for active feedback



Outline HBREP

 Recent major results
— Passive multimode measurements



High resolution space-time measurements reveal
complicated mode dynamics
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Biorthogonal Decomposition (BD) yields empirical basis
functions derived from measurements HBREP

« Singular Value Decomposition splits fluctuation data into spatial and

temporal modes A = vt
» ’ (Tl e vl s
S1 S9 Wi Sn == uq u9o L2k u,
- . |l
Fluctuation signals Temporal modes “n Wy =
J g | | Spatial modes
where u; - u;j = (5;. ViV = (5J’.

« Traveling waves are decomposed into sine and cosine components

cos(no + wt) = cos(ngo) cos(wt) — sin(nao) sin(wt)
1 11 11 ! ]
Spatial Temporal Spatial Temporal

c1 cos(ng) + co sin(ne) = A cos(ng + o)

« BD Technique is robust against sensor gain/alignment errors



High resolution space-time measurements reveal
complicated mode dynamics HBBEP

BD window
3.5-4.0ms

70246: Poloidal Field Fluctuations

gl Q = 360 ; :
P § 270 i Toroidal artay
L S | \“‘ S 180 [ \
S— £ olB AR MR AW W T
High-field-side L3 2.0 2.5 4/0

toroidal array 180

Poloidal array 1

W 4

"4

(o]
o O

-180

A
‘ . o
|
|
k

Poloidal angle
|
©
o

. B 1.5 2.0 . A / 4/0
iR 2 80 .
: \\¥d§5 e | Poloidal array 2
- - — 3 ; - /
Diametrically opposed ,g 98 21/ 7
poloidal arrays S _1s0lB
1.5 2.0 2.5 3.0  R3) 4.0

Time (ms)




BD analysis shows good separation of rotating modes
in HBT-EP discharges HBBEP

Unambiguous pairing of 15t (dominant) mode
2"d mode pair almost always well defined
3'Y mode pair is harder to interpret, but is sometimes coherent
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The m/n=6/2 kink can evolve independently of the 3/1 mode,
implying the need for multimode control HBBEP
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Outline HBBEP

 Recent major results

— Resonant magnetic perturbations (RMPs)
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RMPs applied to lock external kink
and study mode characteristics HBBEP

« Static -3/1 radial field
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edge g crosses 3
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Three regimes of plasmaresponse are observed

when applying 3/1 RMPs HBEEP
2.7<q<2.85
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Three regimes of plasmaresponse are observed

when applying 3/1 RMPs HBEEP
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Biased electrode used to change edge plasma rotation

and kink mode response HBBEP
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-3/1 Phase relative
to natural rotation case

m/n=

Plasma response is enhanced and phase-shifted
for lower plasma rotation HBTEP
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Outline HBBEP

« Upcoming experiments
— Plasma shaping to enhance multimode spectrum
— Multimode feedback with GPU-based control
— Control coil modularity studies
— Ferritic resistive wall mode
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Upcoming experiments will focus on multimode control

Shaping coil will be installed
— Multimode spectrum will change

Multimode feedback with GPU control
— Fast parallel computations for multimode control

Coil modularity studies
— Effect of changing sidebands

Ferritic resistive wall mode
— Reactor relevance

HBEEP

19



Multimode spectrum will be enhanced
with installation of shaping coil HBBEP

« Simple coil geometry will facilitate installation
— Zero-net-turns to minimize coupling with other coil systems
— Low self-inductance simplifies bank design

« Small change to plasma boundary is compatible with existing
diagnostics and control coils
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Active feedback will be done using GPU-based control system HBREP

« Hardware details
— Standard Linux host system
— NVIDIA Tesla M2050 GPU
— D-TACQ ACQ196 digitizer (input from sensors)
— Two D-TACQ AO32 boards (output to control coils)

« Capabilities
— 96 analog inputs, 16-bit resolution

— Fast parallel processing with GPU
» 448 computing cores, each running at 1.15 GHz
— 64 analog outputs

21



Modular control coils allow study of significance of

applied field sidebands
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Ferritic wall components will allow study of
Ferritic Resistive Wall Mode in a toroidal device HBBEP

« Cylindrical model* used to estimate the effect of ferritic material on
the RWM in HBT-EP

* Kurita et al., Nucl. Fus., 43, 949 (2003) 23



Major results and implications HBTREP

« Structure of naturally occurring external kink modes is composed of
multiple independent eigenmodes: m/n=3/1 and 6/2

— ITER and other future tokamaks will require multimode active control

« Application of resonant magnetic perturbations to plasmas having a
pre-existing saturated m/n=3/1 kink exhibit mode locking of the
external kink to the applied resonant field

— Magnitude and phase of the plasma response is dependent on the edge
g and plasma rotation

— Locked plasma response is characterized by linear, saturated, and
disruptive regimes, which depend on the edge q

 Upcoming HBT-EP experiments will continue to investigate
multimode physics and control relevant to future devices, with
plasma shaping, GPU-based control, and ferritic wall modes

24



HBEEP

EXTRA SLIDES
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Plasmaresponds to resonant component of applied field as

the applied helicity is changed HBEEP

—3/1 Response (G)

m/n=

 Control colls used as
5 sensors to determine the
| & Measured Plasma Response T natural 3/1 mode structure

Applied Resonant Component

« Helicity of external field
scanned by changing m
for n=1 fields

. — Applied field projected

onto the natural mode
\ structure to determine
6 resonant component

 Kink response matches
the resonant component
of the applied field
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In the linear regime, kink plasma response is
a maximum when near the 3/| resonance

B, ¥ /B, = 0.001
N L L

m/n= 3/1 Amplitude (G)




Next stage of feedback: Perturbed equilibrium control HBBEP

« The RWM can be interpreted as a

sequence of perturbed equilibria
— RWM evolves much slower than the M
Alfvénic force-balance time scale
— Evolution is caused by changing l
external fields (i.e. decaying wall

currents), and the RWM is a transition of /\./\
the plasma through different MHD

equilibria

» Perturbed equilibrium control:

— Control a specific 3D state, instead of just imposing axisymmetry
or preselecting a rigid perturbation

28



