

Active Control of Rotating Edge Modes using HHFW Antenna in NSTX

Columbia U
CompX
General Atomics
FIU
INL
Johns Hopkins U
LANL
LLNL
Lodestar
MIT
Nova Photonics
New York U
ORNL
PPPL
Princeton U
Purdue U
SNL
Think Tank, Inc.
UC Davis
UC Irvine
UCLA
UCSD
U Colorado
U Illinois
U Maryland
U Rochester
U Washington
U Wisconsin

**Jong-Kyu Park¹, Rob Goldston¹
Eric Fredrikson¹, Kevin Tritz²**

¹ Princeton Plasma Physics Laboratory

² Johns-Hopkins University

**MHD Mode Control Workshop
General Atomics
November 20-22, 2011**

Culham Sci Ctr
U St. Andrews
York U
Chubu U
Fukui U
Hiroshima U
Hyogo U
Kyoto U
Kyushu U
Kyushu Tokai U
NIFS
Niigata U
U Tokyo
JAEA
Hebrew U
Ioffe Inst
RRC Kurchatov Inst
TRINITI
NFRI
KAIST
POSTECH
ASIPP
ENEA, Frascati
CEA, Cadarache
IPP, Jülich
IPP, Garching
ASCR, Czech Rep

Motivation (I)

- A problem with impurity control in NSTX
 - Lithium is effective at holding the deuterium density constant
 - But the carbon density keeps rising [*Maingi, PRL 103, 075001 (2009)*]
 - Core radiation rises
 - This is not good, but it is not because the lithium is not pumping deuterium
 - In the absence of ELMs the plasma does not unload impurities
- Are EHOs the answer?
 - DIII-D has found QH modes both for counter and co-injected cases [*Greenfield, PRL 86, 4544 (2001)*] [*Burrell, PRL 102, 155003 (2009)*]
 - The density does not rise in these plasmas, despite absence of ELMs
 - It is believed that the Edge Harmonic Oscillations (EHOs) are the reason

Motivation (II)

- EHOs have been observed in NSTX ELM-free periods
 - 2-8kHz and n=4-6 EHOs have been observed (PEST and ELITE codes showed n=3 is most unstable in NSTX)
 - EHOs were weak in amplitudes and did not pump density out
- Direct coupling to EHOs to increase amplitudes has been discussed, by utilizing HHFW antenna as 3D coils
 - Present Error Field Correction (EFC) coils are not effective for n>3
 - HHFW antenna straps are localized within $\Delta\phi < 90^\circ$ and perhaps would be effective for n>3
- This will be proposed for NSTX-U again in the future, but study showed the possibility of HHFW straps for 3D coils

EHOs were seen on NSTX Mirnov coils

- $n=4-6$ EHOs were observed in the edge by Mirnov coils tuned for low frequency and low amplitude
- EHOs are clearest in some optimal operating regimes
 - 4MW, 0.8MA, 0.4T
- Generally amplitudes of EHOs are very low, without reduction of density increase
- Amplitudes may be able to be increased by active driving for EHOs

EHOs were also seen on UFSXR

- $n=4-6$ EHOs were observed in the edge by Ultra-Fast Soft X-Ray (UFSXR) diagnostics
- Such clear signals were not seen without EHOs

EHOs in NSTX were however found in only limited operational domains (I)

- $I_P=0.8\text{MA}$, $B_T=0.4\text{T}$, $P_{\text{NBI}}=4\text{MW}$

- $I_P=0.8\text{MA}$, $B_T=0.4\text{T}$, $P_{\text{NBI}}=6\text{MW}$

EHOs in NSTX were however found in only limited operational domains (II)

- $I_P=1.0\text{MA}$, $B_T=0.45\text{T}$, $P_{\text{NBI}}=4\text{MW}$

- $I_P=0.8\text{MA}$, $B_T=0.33\text{T}$, $P_{\text{NBI}}=4\text{MW}$

Edge rotational shear is strong in NSTX, perhaps in a consistent way as expected for EHOs

- Edge rotational shear is often strong in NSTX, and perhaps there may be a correlation between rotation shear and NSTX EHOs' amplitudes

Active control of EHOs using HHFW antenna has been proposed by R. Goldston

- Maybe we can use HHFW to drive EHOs and even control impurity influx
- Easy to modulate HHFW amplitude in high frequency 2-8kHz

NSTX HHFW antenna system can be used to produce high-n magnetic perturbations

- NSTX HHFW antenna system has 12x2 straps covering 90 toroidal angles at the midplane
 - Each strap is modeled with a open filament (model can be improved)
- HHFW can produce $n=1-6$ (spatially tangential) perturbations

High-n perturbations from HHFW may be able to excite dominant fields in NSTX plasmas

- Dominant fields for high-n's in NSTX are localized at the midplane, and so may be well coupled with HHFW driven perturbations
 - Dominant field is defined as the field maximizing total resonant field at $\psi_N=0.8\sim0.95$ for each n
 - As known, wavelength of dominant field becomes shorter for higher n

Overlap with dominant field and Chirikov (I)

- All same currents for 24 straps give maximum power, but only to low n's

HHFW

Overlap with dominant field

n=1 n=2 n=3 n=4 n=5 n=6

Chirikov for each n

Overlap with dominant field and Chirikov (II)

- Up-down asymmetry for 24 straps can maximize middle n's (n=3-4)

HHFW

Overlap with dominant field

n=1 n=2 n=3 n=4 n=5 n=6

Chirikov for each n

Overlap with dominant field and Chirikov (III)

- The half of the straps can give the similar efficiency in this configuration

HHFW

Overlap with dominant field

n=1 n=2 n=3 n=4 n=5 n=6

Chirikov for each n

Overlap with dominant field and Chirikov (IV)

- This configuration can maximize $n \geq 5$, while minimizing $n \leq 4$

HHFW

Overlap with dominant field

$n=1$ $n=2$ $n=3$ $n=4$ $n=5$ $n=6$

Chirikov for each n

Overlap with dominant field and Chirikov (V)

- This configuration may be the best by gradual weighting for higher n .

Comparison with EFC coils for n=6 (I)

- HHFW is more efficient than EFC coils for higher $n > 3$, even with same currents

Comparison with EFC coils for n=6 (II)

- HHFW antennas are effective 3D coils with various combinations, and can be combined with EFC coils to maximize only higher n's

Summary and Future work

- EHOs with $n=4-6$, 2-8kHz have been observed in NSTX by Mirnov and UFSXR
 - Amplitudes are however low and density pumping was not observed
- EHOs were however found in limited operating regime
 - Edge rotational shear may be also the key to EHOs
- HHFW antennas can produce such harmonic perturbations and so perhaps can be used for active control of EHOs
- Dominant field, and Chirikov analysis showed HHFW antennas are indeed effective to produce high $n>3$, unlikely to EFC coils
- HHFW antennas are effectively 3D coils, and can be combined with EFC coils to control various n 's
- This study will be extended and tested in NSTX-U
- We are open to the idea and to the collaboration in other tokamaks for active AC control of EHOs