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Measurements of plasma response to applied

perturbations used to understand, control RWM stability

e Motivation: need to validate theories of RWM stability for ITER, beyond

— Resistive wall modes arise from the interaction between an external kink mode and wall
eddy currents. RWMs can be global, beta-limiting instabilities.

— Recent experiments on several devices have shown complex dependence of stability on
plasma rotation, lack of a critical rotation threshold.

Compare driven response of stable plasma with theory
— 0B/B < 103 — refer to this state as a perturbed equilibrium

Ideal MHD describes perturbed equilibria below no-wall beta limit
— Large body of measurements consistent with ideal MHD when B < gro-wall

Kinetic modifications to ideal MHD needed above no-wall limit
— Evidence for wave—particle interactions uncovered, qualitatively consistent with theory.

— Off-axs NBI used to probe kinetic damping in recent experiment

Direct stability control demonstrated using NBI feedback
— Feedback dynamics are linear below no-wall limit.
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1. Making perturbative measurements of RWM stability
— Measure plasma response dBr'as to applied fields in stable plasmas

2. Linking plasma response and ideal MHD theory
— Ideal MHD describes experiments for 8 < gro-wall plasma rotation sufficiently high

3. Uncovering kinetic modifications to ideal MHD
— Kinetic modifications important when g8 > gno-wall

4. Controlling the proximity to the RWM stability limit
— Direct control of RWM stability margin demonstrated using NBI feedback
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Perturbative measurements
of RWM stability

-
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DIlI-D tokamak is well equipped to create and

measure perturbed equilibria

I-coil vacuum field (5B/B; < 109)
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DIlI-D tokamak is well equipped to create and

measure perturbed equilibria

I-coil vacuum field + plasma response
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DIlI-D tokamak is well equipped to create and

measure perturbed equilibria

Plasma response to I-coil field
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DIlI-D tokamak is well equipped to create and

measure perturbed equilibria

Plasma response to I-coil field
OB, at wall

\ 180
- Brup ) \

Upper
I-coil §
2 OB mid (™) (=)
D
D
1| 9Bpmid (®) = Qr and B,
L pickup loops
™ . 5
Lower bBr,mid (.) é
I-coil &
A S
5Br,low (<>)
-180
0 90 180 270 360

Toroidal angle ¢ (Deg.)

Fits to magnetic measurements yield amplitude and toroidal phase of
plasma response
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Single-frequency analysis yields plasma response to

applied, rotating perturbation

1. Apply rotating n = 1 perturbation

119412
- 20 Hz coil currents (kA) at ¢ = 30, 90, 150 deg

e Apply rotating perturbation near
natural rotation frequency of RWM,
~20 Hz in DIII-D.
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Single-frequency analysis yields plasma response to

rotating, 3D perturbation

1. Apply rotating n = 1 perturbation

119412

§§: 20 Hz coil currents (kA) at ¢ = 30, 90, deg . Apply rotating perturbation near
00¢ natural rotation frequency of RWM,
04 ~20 Hz in DIII-D.

2. Fourier analysis gives resonant response

5; 0Bp (G) at ¢ = 67 deg tisgi2 « Measure response using

h: j synchronous detection. Fourier

analyze over a sliding window

1o O

: 0Bp (G) at p =97 de . . . . .
z | containing several oscillation periods

« In real-time analysis and feedback,
sliding averaging window leads to

3B, (G)aty = 157 de delay of half the window size,
f ul j Tjag ~ 100 ms.
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Single-frequency analysis yields plasma response to

rotating, 3D perturbation

1. Apply rotating n = 1 perturbation

119412
- 20 Hz coil currents (kA) at ¢ = 30, 90, 150 deg -

Sooooo
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2. Fourier analysis gives resonant response pickup from coils

2' 20 Hz part, compensated (G)3
3 ~ -2f 119412 NS L

: 0Bp (G) at p =97 de

_ ()Bp (G) at o =67 deg 19412 2

g1 O O
o

2' 20 Hz part, compensated (G);
0- /\ /\ /
2t NS  \J ]
— - 20 Hz part, compensated (G)3

g TN N\
3 2t \/ \/

o1 o O

_ ()Bp (G) at 9 =127 de

g1 O O,

at 9 =157 de

" 9By (G) ' + 20 Hz part, compensated (G);

ol '

E — 2t \/ \/ ]

1150 1200 1250 1300 1350 1400 1450 13001320 13401360 1380 1400
time (ms) time (ms)

g1 O O

Dili-D

NATIONAL FUSION FACILITY

J. M. Hanson | 161" Workshop on MHD Stability Control | 21 November 2011

11



Single-frequency analysis yields plasma response to

rotating, 3D perturbation

1. Apply rotating n = 1 perturbation

119412
- 20 Hz coil currents (kA) at ¢ = 30, 90, 150 deg -

Sooooo
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4. Toroidal mode number fit
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Link between plasma response and
ideal MHD theory below no-wall limit

-
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Plasma response dependencies consistent with ideal

MHD expectations for RWM stability, below no-wall limit

Plasma response

Br n= 1 amplltude (G/kA)
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- Data from 14 shots, obtained during AT scenario development day

* Increase of dBr'as with B, widely observed (DIll-D, NSTX, JET)
— Some devices/scenarios do exhibit devitations from monotonicity
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Plasma response dependencies consistent with ideal

MHD expectations for RWM stability, below no-wall limit

Plasma response

TrrrrrrorroT rrrrrrrrrrrrrrrrrorrrrrrrorT Trrrrrrrorr T

Br n =1 amplitude (G/kA)

ISLD/ICOIL, 20 Hz
4 period avg ]

06 07 08 09 10 11
Internal inductance ¢;

« See inverse dependence on internal inductance (current profile broadness)
— Scatter due to wide variations in By
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Plasma response dependencies consistent with ideal

MHD expectations for RWM stability, below no-wall limit

Plasma response

Brn= 1ampI|tude (G/kA)
- ISLD/ICOIL, 20 Hz A
. 4 period avg A “A

=
T

« Clear dependence of plasma response on B,/£ ; normalization
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Measured plasma response consistent with linear, ideal

MHD below no-wall limit

e Linear ideal MHD calculations (MARS-F) in good agreement with
magnetic plasma response measurements

[M.J. Lanctot et al., Phys. Plasmas 2010]
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Measured plasma response consistent with linear, ideal

MHD below no-wall limit

e Linear ideal MHD calculations (MARS-F) in good agreement with SXR
profile measurements of plasma response

[M.J. Lanctot et al., Phys. Plasmas 2011]
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Measured plasma response consistent with linear, ideal

MHD below no-wall limit

e Linear ideal MHD calculations (MARS-F) in good agreement with SXR
profile measurements of plasma response

[M.J. Lanctot et al., Phys. Plasmas 2011]
By =1.69 (135758.02505)
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Measurements of n =2, 3 plasma response compared

with linear, ideal MHD

* Plasma response to ac n = 2 perturbations predicted for a range of S,
gq5 Values using MARS-F

MARS-F n =2 plasma response
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Measurements of n =2, 3 plasma response compared

with linear, ideal MHD

* Plasma response to ac n = 2 perturbations predicted for a range of S,
gy values using MARS-F

- . . . = oBplas amplltude
* Preliminary comparison with experiment 3 1.0 hn=z gl
. . . ~ 0.8;
yields qualitative agreement g | "l
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Measurements of n =2, 3 plasma response compared

with linear, ideal MHD

* Probe plasma with static n=3 fields using odd and even parity
 Measurements and modeling (MARS-F) show plasma dB at midplane
—Increases with 3, for odd parity field
— Decreases with 3, for even parity field

I_ctg?lper 20 . Il Experiment (Odd) Ul’fce;"
- Il Experiment (Even)
1.5
0dd parity case < I Even parity case
131321.01975 g 138344.02306
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495 = 5.0 2 p + ] ] qg5 = 4.0
du =0.1 5 Ideal MHD -
< o5 (MARS-F) .
Lower _
I-coil 0.0 .
1.4 1.6 1.8 2.0 2.2 2.4
BN
DIII-D [Lanctot, et al., Phys. Plasmas 2011]
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Measurements of n =2, 3 plasma response compared

with linear, ideal MHD

* Measured phase of even parity response field drifts by 60° with 8, in
agreement with linear ideal MHD model

- Odd parity phase is relatively constant

et i ﬁ Ideal MHD § ool
- / (MARS-F) 1
0F E
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Linear, ideal MHD sufficient to predict plasma

response below the no-wall limit

P!
Scan of 8, dependence of n=1 Plasma response dBg ™/l
(n=1, fo,;=10H2)

plasma response reveals limitation of : ‘
linear ideal MHD = oof Linearideal :
< F MHD (MARS-F) ]
— Ideal MHD works for 8 < 0.8 g 3 : :
— Diverges near no-wall limit s .. fails :
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_g- | applicable ;
<C _ J
* Progress in describing observed 02 Measurement |
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[Lanctot, et al., Phys. Plasmas 2010]
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Uncovering kinetic modifications to
ideal MHD

-
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Kinetic wave-particle damping leads to enhanced

RWM stability above no-wall limit

* Ideal MHD energy principle modified to include kinetic damping physics
[Hu and Betti, PRL, 2004].
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Kinetic wave-particle damping leads to enhanced

RWM stability above no-wall limit

* Ideal MHD energy principle modified to include kinetic damping physics

[Hu and Betti, PRL, 2004]. — T
RWM growth rate ;
T T W SWiw + OW | Ideal MHD
' W K without rotation: Kinetic | :
. | RWM unstable damping | i
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- 2 o~ 5
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Kinetic wave-particle damping leads to enhanced

RWM stability above no-wall limit

* Ideal MHD energy principle modified to include kinetic damping physics

[Hu and Betti, PRL, 2004].

OWhw OWhw + 0Wx

YTw = — -
oW; OWiw + 0Wxk

1 (s = -
6WK=§f§l-V-PKd5’

Ideal MHD
without rotation:
RWM unstable

RWM growth rate

Kinetic
damping

e

above no-wall limit \I

stable

'Bﬂo-wali -

| bidéal—Wall
N

 Kinetic energy principle oWy allows for energy exchange between RWM

and kinetic particle populations:

— Resonances between motion of trapped particles and plasma rotation
— Non-resonant effects that depend on alignment of distribution function gradients and

the RWM eigenfunction

— Several codes incorporate this physics: MISK, HAGIS, MARS-K
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Kinetic RWM stability effects investigated in stable

plasmas above the no-wall limit

.pplas
Plasma response 5B’y /l ¢

(=1, foxt = 20 H2) (LSN, B, ~2.3)
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slowly rotating n = 1 perturbations used (@) —i;};
to compare theory and experiment g al 1
g | ‘
* Rotation scan revealed evidence of 2 | )
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. M. = (1.0+0.3i) G/KA, t,, = 2.5 ms
stability threshold o ,W

3 |
S 30} ]
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[Berkery, et al, PRL, 2010] wgTa (G=2) (%)
Diln-=-D [Reimerdes, et al, PRL, 2011]
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Kinetic RWM stability effects investigated in stable

plasmas above the no-wall limit

* Measurements of plasma response to
slowly rotating n = 1 perturbations used
to compare theory and experiment

* Rotation scan revealed evidence of
trapped particle resonances in DIlI-D;
complemented NSTX work on the RWM
stability threshold

[Berkery, et al, PRL, 2010]
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Kinetic RWM stability effects investigated in stable

plasmas above the no-wall limit

plas
Plasma response 5B’y /l ¢

(=1, fext = 20 Hz) (LSN, B, ~2.3)

* Measurements of plasma response to 6
slowly rotating n = 1 perturbations used .(?Zc it —i;}; T
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Off-axis NBI expected to decrease RWM stability

Trapped ion fraction

1.0 onetwo/nubeam, 20k particles, at deposition,141090.03000

08!
0.6/
0.4/
0.2/
0.0L

On-axis NBI

Off-axis NBI

1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | —

00 02 04 06 08 1.0
rho

* Transport modeling: reduced trapped ion fraction with off-axis NBI, due to
more favorable alignment of injection angle with field line pitch.

 Reduced RWM stability expected with off-axis NBI; stabilizing effect of passing
particles expected to be localized near resonant surfaces, small.
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Off-axis NBI leads to increased RWM stability

146540
» Off-axis NBI power modulated at  13¢ | - |
constant B, £, density 100 Rugi (MW)
— Minor variations in rotation profile 6F E
8— Tyg) (Nm) 3
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Including finite orbit width effects results in

enhanced damping of RWM with off-axis NBI

— TRANSP predicts fast ion distribution function
— HAGIS evolves interaction between fast ions and RWM

0045 - M Trapped Fast lons

0.04 1 [ Passing Fast lons — Scanned radial peak of
0035 + distribution function using
= 0.03 simplified model for F,
@O 0.025 -
D]
Qﬁ 0.02 . . .
0.015 4 — Passing fast ion damping
0.01 - sensitive to location of peak of F,,
0.005 - with respect to rational surfaces
0
On-axis Off-axis
Din-p
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Stabilizing effect of off-axis NBI observed over a

range of rotation

Radial field plasma response amplitude (G/kA)

vvvvvvvvvvvvvvvvvvvvvvvvv

- Existing 2010 dataset extended 5;_ + On-axis NBI (2010) |
to higher rotation ger © < 2.5 MW off-axis NB|§
4 be- :
: +.
2 " ¥ o o
1 ® _
0. . ESLD/ICOIL, n = 1, f_ext = 20 Hz

20 40 60 80 100 120
CER rotation near q = 2 (km/s)
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Stabilizing effect of off-axis NBI observed over a

range of rotation

Radlal fleld plasma response amplltude (G/kA)

- Existing 2010 dataset extended 55_ o On -axis NB' (2010)
to higher rotation gl 0<25MWo s NB L_
4: . " 5 MW off-axis NBI
+-
- ) “ et :
o i : 3 "+ d:ul-*” _:Et-_
- See ~50% reduction in plasma 9 xt . ;
response amplitude with 5 MW -+ £ x
off-axis NBI, at intermediate 1 X * % :
rotation. 0 ESLD/ICOIL, n =1, f_ext = 20 Hz

20 40 60 80 100 120
CER rotation near q = 2 (km/s)

- Continued damping at increased rotation qualitatively consistent with
theoretical expectations.

- Resonances with additional bounce frequency harmonics encountered
as rotation increases.
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Controlling proximity to the
RWM stability limit

-

NATIONAL FUSION

J. M. Hanson | 161" Workshop on MHD Stability Control | 21 November 2011 37



RWM stability directly controlled with NBI for first time

142699
|5BPlas|
target <\ error| Modulate \| T, stability
4 I Pygi 7| change |
+
Measure |, 8 ;
|oBPlas| [N 6l P I
4 - Feedforward E
* Plasma response measurement g - -

input to NBI control algorithm

1 16824 (G)

* Plasma response settles to a
value near the target on a
timescale close to 7z ~ 100 ms.

—
o O
T

* By changes linearly with plasma
response amplitude — expected
below no-wall limit.

0.5: ¢ ]

1500 2000 2500 3000

Dii-D time (ms)
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Observed oBr'as dependencies suggest 2 parameter

dynamical model

. Consider a model of the form Least squares fit to 1VBP2| = cE
1 AL I AL I BELLL A BN BELE L B
5Bpla —~16B”| + cPxgr. _
| | = T| 1| + cPNgI 1.5 02=1.19G/MJ +. $
« 2 parameters can be estimated by fitting . X =204
experimental data S 1.0 4 +*+
e Time-constant T §_‘.T
« Beams coupling coefficient ¢ io)
= 05
* Equivalent to a model* for the plasma
stored energy E, if 0.0L,
rots and [6BP) = cE = c2Plp, 0.0 0.2 0.4 0.6 0.8 1.0 1.2
2pt0a Stored energy E (MJ)

e Expect this scaling to work for
constant I, B, a.

*J. T. Scoville, et al., Fusion Eng. and Design 45, A367 (2003)
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Time-constant obtained from fit to steady-state limit

 In the steady state limit, obtain

las
|5B5:1| = CTEPNBI-

» So time constant can be obtained
from least squares fit if ¢ is known.

e These linear relationships will not

necessarily hold at high B, above the
no-wall limit.

* However, super-linear dependence of
|6B°'3s| with B, suggests that a linear
controller would naturally avoid the
RWM’s true marginal stability point.
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Least squares fit to |0Bh-| = ¢tPyg;
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: ——
_ |Tt=126ms
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Conclusions

e Ildeal MHD describes perturbed equilibria below no-wall beta limit
— Large body of measurements consistent with ideal MHD at low 8 < g™

— Magnetic (n=1, 2, 3) and SXR profile measurements (n = 1) compared with theory

* Kinetic modifications to ideal MHD needed above no-wall limit

— Experimental evidence for wave — particle interactions uncovered, qualitatively
consistent with kinetic theory.

— Off-axis NBI used to probe kinetic damping in recent experiment, lead to increased
damping of RWM

— New data obtained for comparisons with theory.
— Preliminary calculations indicate finite ion orbit width effects may be important

* Direct RWM stability control demonstrated using NBI feedback
— Linear feedback dynamics obtained below no-wall limit

— Possible solution for maximizing 8 while avoiding unstable RWM
— Challenges expected above no-wall limit: rotation, kinetic effects impact feedback linearity
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