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OUTLINE 

 Experimental tools: 
 

   (1) EXTRAP T2R 
   (2) The active coils and (some of) their capabilities, 
   a tool for the study of  3D magnetic field effects: 
 

 Non-Resonant Magnetic Perturbations braking 
   (1) Plasma viscosity estimation (experimental) 
   (2) Torque estimation (experimental) 
   (3) Torque estimation (via NTV theory, by Y. Sun) 
   (4) Comparison experimental results - theory 
 

 RMP screening 
   (1) Goal: to study the effect of  the plasma flow on  the RMP screening 
   (2) The technique: how to modify the flow without affecting other plasma parameters? 
   (3) Experimental results 
   (4) Comparison with theoretical models (Fitzp.-Guo-Weal. and Rozhansky) 
       

 Error field assessment using external perturbations  
    see F. Volpe on Monday, 3.05pm 
 
 Conclusions  



EXTRAP T2R 

EXTRAP T2R is a RFP with: 
 

   R=1.24m 
   a=0.18m      
  

   Ip  ≈  80-150kA 
   ne  ≈  1019m-3 
   Te ≈  200-400eV 
   tpulse≈ 90ms 
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 Sensor coils 
       4 poloidal x 32 toroidal  
        located inside the shell 
 

 Digital controller 
 

 Active coils 
        4 poloidal x 32 toroidal  
        located outside the shell 
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THE FEEDBACK SYSTEM 
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Intelligent Shell + RMP 
(m,n)=(1,-12) 

non-resonant  
harmonics 

resonant  
harmonics 
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Intelligent Shell + RMP + non-RMP 
(1,-12) and (1,-9) 

The RIS algorithm can be used to generate external perturbation 
[Olofsson PPCF 104005, 52 (2010)] 
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 A single resonant  
   perturbation 
 
 

 Two or more  
   perturbations 
 



 Plasma flow braking via non-Resonant Magnetic Perturbations 
 
   (1) Experimental viscosity estimation via RMP 
 

         Then, the viscosity will be used along with the torque balance equation to obtain: 
 

   (2) Torque estimation from experimental data 
 
   (3) Torque estimation (via NTV theory, by Y. Sun) 
 
   (4) Comparison experimental results – theory 
 
   (5) Conclusion on Non-RMP  braking 
 
 

NON-RESONANT PERTURBATION BRAKING 



VISCOSITY ESTIMATION via RMP 

non-RMP RMP 

(1,-15) (1,-15) 

rs
1,-15 

 RMPs produce plasma braking 
 
 The maximum velocity reduction 
   is localized at the resonance of  the 
   externally applied RMP 
 

 



VISCOSITY ESTIMATION via RMP 

rs
1,-15 

 The viscosity νkin can be estimated via  
    the torque balance: 
 
 
 
 
 For a RMP, the torque might be obtained by: 
 
 

 
 
 
 Is it a reasonable expression? 
 

   (1) Absolute value: reasonable 
         from comparison theory-experiments, 
         [Frassinetti et al., NF 035005, 50 (2010)] 
 

   (2) Radial shape (delta-function): reasonable 
         from the experimental profile  
         of  the velocity variation. 
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[Fitzpatrick and Yu, PoP 3610, 7 (2000)] 



VISCOSITY ESTIMATION via RMP 

 The viscosity νkin can be estimated via  
    the torque balance: 
 
 
 
 
 TEM is calculated from Fitzpatrick expression 
 
 The velocity profile variation ∆ω is from 
   experimental measurements 
 
 Uncertainty is estimated with a Monte Carlo 
    approach 
 
 The large uncertainty in the  core is due to  
    the almost flat ∆v in the core 
 
 The viscosity is larger than the classic value,  
    but  in agreement with earlier estimations. 
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[Vianello et al., PRL 135001, 94 (2005)] 
[Almagri et al., PoP 3982, 5 (1998)] 



NON-RMP BRAKING 

(1,-11) 

 Non-RMPs produce plasma braking 
 
 The velocity braking is not localized  
     in any radial position 
 
 The torque is estimated from 
 
 The torque is not localized in any specific  
   position but is affects globally the entire core 
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NON-RMP BRAKING 
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Non-RMP 0.4mT 
 The Non-RMP braking depends on  
    the harmonic 
 
 The more far from the resonant,  
   the lower the braking 
 

 The torque has a similar trend  

ex
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 ASSUMPTION: the NTV theory is valid in the RFP configuration 
 
 The code for NTV torque calculation [Sun et al., NF 053015, 51 (2011)] 
   has been adapted to EXTRAP T2R 
 
 Ions and electrons are mainly in  
   the collisionless regime  
 
 Since ν*di0<1  ions are mainly in  
  the        or super-banana regime. 
 
 Since ν*de0>1  electrons are  
   mainly in the 1/ν regime 
 

NTV THEORY APPLIED TO EXTRAP T2R 

(by Y. Sun) 
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TORQUE COMPARISON 

NTV theory 

n=-11  
0.4mT 

Experimental estimation 

n=-11  
0.4mT 

 Reasonable qualitative agreement  
    in the profile. 
 From a quantitative point of  view,  
    NTV torque is ≈3 times lower 
 

ex
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 Reasonable qualitative trend versus  
    the perturbation harmonic. 
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CONCLUSIONS and FUTURE WORK 

 Non RMP braking 
 

   (1) The torque is estimated from experimental velocity braking  
 

         - the Non-RMP torque is not localized in any specific position but affects the entire core 
         - the Non-RMP torque decreases as the perturbation harmonic is more far from the resonance 
 
 

   (2) NTV theory has a reasonable qualitative agreement with the experimental results 
 

   (3) NTV theory predicts a torque 3-4 times lower than the one necessary  
         to obtain the experimental braking 
 

   (4) Future work/open questions: 
 

          - Study the dependence on the non-RMP amplitude. 
             - The viscosity is estimated considering only the EM torque.  
                  Underestimation of  the viscosity? 
                  Underestimation of  experimental TNTV? 
          - The NTV calculation for EXTRAP T2R needs to be extended to the resonant harmonics:  
                 How to consider the plasma response? 
                 How to consider the perturbation screening? 
 
         This leads us to the next topic… 
 
 



 RMP screening 
 

   (1) Motivation of  the work:  
         does the plasma rotation affect the penetration of  a RMP? 
   
   (2) The technique:  
         how to modify the plasma rotation without affecting other plasma parameters? 
         Using a non-RMP. 
   
   (3) Experimental results: 
         What to look? How to quantify the RMP effect? 
         By studying the interaction of  a rotating TM with a stationary RMP field for  
         varying plasma rotation velocity. 
   
   (4) Comparison with some theoretical models (preliminary):  
          - Fitzpatrick Guo Wealbroek models  
          - Rozhansky model 
 

RMP SCREENING 



 Then, the RMP will be applied during the stationary phase 

HOW TO CHANGE THE PLASMA ROTATION? 

 Using a non-RMP, the plasma rotation can be modified 

Magnetic Perturbations  
applied at the edge 

non-resonant harmonics Non Resonant  
Perturbation 



NON-RMP plus RMP 

The technique: 
 
     (1) Apply a non-RMP to obtain  
          the “desired” velocity 
 
     (2) Apply a RMP to study the TM response 
 
           The TM response will depend on: 
          (a) the RMP (amplitude and harmonic) 
          (b) the plasma rotation (if  the screening occurs) 
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NON-RMP EFFECT ON PLASMA PARAMETERS 

 By modifying the non-RMP amplitude, 
    the plasma rotation is changed. 
 
 NO significant variation in:  (1) Ip 
   (2) Impurities 
   (3) Equilibrium 
     (4) TM amplitude (see later) 
   (as long as the perturbation is not too large) 
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EFFECT ON THE TEARING MODE 

with RMP 0.6mT 

Reference plasmas  
(no RMP)  Reference plasmas: 

     

         (a) RMP is NOT applied 
        (b) Non-RMP is used to change  
            the plasma velocity 
 
         No effect on the TM amplitude 
 

 Plasmas with RMP:  
     

         (a) always the same RMP harmonic 
           and RMP amplitude is used: br

1,-12=0.6mT 
              
         (b) Non-RMP is used to change  
            the plasma velocity 
 
         At high plasma rotation the RMP effect on the TM seems negligible. 
         RMP Screening? 



Comparison with theoretical models 

 Fitzpatrick, Guo, Wealbroek models: 

assuming constant velocity and  
large RMP amplitude, the solution is: 

2/3
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 Rozhansky model: 
    (it considers radial current of  electrons in a stochastic field) 

for example [Phys. Plasmas 8 4489 (2001)] 

[Nucl.  Fusion 51 083009 (2011)] 
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Rozhansky 

Both models can give a reasonable agreement with experimental data. 
More detailed comparisons are in progress. 



Reference plasma (no rmp) 

TM dynamics 

RMP 0.6mT 

 Reference plasma:  
   - TM amplitude approximately constant 

 RMP 0.6mT and fast plasma rotation 
   - the RMP amplifies and suppress the  TM depending of  the phase 

 RMP 0.6mT and slow plasma rotation 
   - the TM is amplified and suppressed. But due to the lower rotation,  
     the TM is in a positive phase relation with RMP for a longer time ⇒ stronger amplification 



 Non-RMP braking 
 

   (1) The torque is estimated from experimental velocity braking  
 

         - the Non-RMP torque is not localized in any specific position but affects the entire core 
         - the Non-RMP torque decreases as the perturbation harmonic is more far from the resonance 
 
 

   (2) NTV theory has a reasonable qualitative agreement with the experimental results 
 

   (3) NTV theory predicts a torque 3-4 times lower than the one necessary  
         to obtain the experimental braking 
 
 
 
 

 RMP screening 
 

    (1) Plasma rotation is modified by a applying a non-RMP producing: 
          - velocity reduction 
          - no significant effect on equilibrium and TM amplitude 
  

    (2) The same technique is used applying a RMP with constant amplitude 
 

    (3) The analysis of  the TM amplitude shows a smaller effect of  the  RMP at high rotation: 
             the plasma rotation clearly affects the dynamics of  the TM 

    (4) Existing models seem to give a reasonable explanation 
 

    (5) Future work:    - increase of  the statistic (more plasma shots) and of  the velocity scan steps. 
                                  - study of  different RMP harmonics 
                                  - more detailed comparison theory-experiment. 

CONCLUSIONS and FUTURE WORK 
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