EXTRAP T2R active coils as a tool for the study of 3D magnetic field effects on plasma dynamics

L. Frassinetti, K.E.J. Olofsson, P. Brunsell and J.R. Drake

Association EURATOM-VR, School of Electrical Engineering, Royal Institute of Technology KTH

Y. Sun, Association EURATOM-FZJ, Julich, Germany
(present address: Chinese Academy of Sciences, Hefei, China)
OUTLINE

- **Experimental tools:**
 1. EXTRAP T2R
 2. The active coils and (some of) their capabilities, **a tool for the study of 3D magnetic field effects:**

- **Non-Resonant Magnetic Perturbations braking**
 1. Plasma viscosity estimation (experimental)
 2. Torque estimation (experimental)
 3. Torque estimation (via NTV theory, by Y. Sun)
 4. Comparison experimental results - theory

- **RMP screening**
 1. Goal: to study the effect of the plasma flow on the RMP screening
 2. The technique: how to modify the flow without affecting other plasma parameters?
 3. Experimental results
 4. Comparison with theoretical models (Fitzp.-Guo-Weal. and Rozhansky)

- **Error field assessment using external perturbations**
 see F. Volpe on Monday, 3.05pm

- **Conclusions**
EXTRAP T2R is a RFP with:

- $R = 1.24\text{m}$
- $a = 0.18\text{m}$
- $I_p \approx 80-150\text{kA}$
- $n_e \approx 10^{19}\text{m}^{-3}$
- $T_e \approx 200-400\text{eV}$
- $t_{\text{pulse}} \approx 90\text{ms}$

THE DEVICE

$(m=1 \, n<-12)$ are resonant

$\frac{d}{d\theta} b_\theta^{\text{TM}} (\text{mT})$
THE FEEDBACK SYSTEM

- **Sensor coils**
 4 poloidal x 32 toroidal located inside the shell

- **Digital controller**

- **Active coils**
 4 poloidal x 32 toroidal located outside the shell

\[\tau_{\text{shell}} \approx 13.8 \text{ms} \] (nominal)

- **No feedback**

- **LCFS**
THE FEEDBACK SYSTEM

- **Sensor coils**
 4 poloidal x 32 toroidal located inside the shell

- **Digital controller**

- **Active coils**
 4 poloidal x 32 toroidal located outside the shell

\[\tau_{\text{shell}} \approx 13.8 \text{ms} \text{ (nominal)} \]
The RIS algorithm can be used to generate external perturbation
[Olofsson PPCF 104005, 52 (2010)]

- A single resonant perturbation
- Two or more perturbations
Plasma flow braking via non-Resonant Magnetic Perturbations

1. Experimental viscosity estimation via RMP
 Then, the viscosity will be used along with the torque balance equation to obtain:

2. Torque estimation from experimental data

3. Torque estimation (via NTV theory, by Y. Sun)

4. Comparison experimental results – theory

5. Conclusion on Non-RMP braking
- RMPs produce plasma braking

- The maximum velocity reduction is localized at the resonance of the externally applied RMP
The viscosity ν_{kin} can be estimated via the torque balance:

$$\frac{R^2}{r} \frac{\partial}{\partial r} \left(r \nu_{\text{kin}} \frac{\partial \rho \Delta \omega}{\partial r} \right) = T_{EM}$$

For a RMP, the torque might be obtained by:

$$T_{EM} = k^{m,n} b_{TM}^{m,n} b_{RMP}^{m,n} \sin \phi^{m,n} \delta (r - r_s)$$

[Fitzpatrick and Yu, PoP 3610, 7 (2000)]

Is it a reasonable expression?

1. Absolute value: reasonable from comparison theory-experiments, [Frassinetti et al., NF 035005, 50 (2010)]

2. Radial shape (delta-function): reasonable from the experimental profile of the velocity variation.
The viscosity ν_{kin} can be estimated via the torque balance:

$$\frac{R^2}{r} \frac{\partial}{\partial r} \left(r \nu_{\text{kin}} \frac{\partial \rho \Delta \omega}{\partial r} \right) = T_{\text{EM}}$$

T_{EM} is calculated from Fitzpatrick expression

The velocity profile variation $\Delta \omega$ is from experimental measurements

Uncertainty is estimated with a Monte Carlo approach

The large uncertainty in the core is due to the almost flat Δv in the core

The viscosity is larger than the classic value, but in agreement with earlier estimations.

[Vianello et al., PRL 135001, 94 (2005)]
[Almagri et al., PoP 3982, 5 (1998)]
- Non-RMPs produce plasma braking
- The velocity braking is not localized in any radial position
- The torque is estimated from $\frac{R^2}{r} \frac{\partial}{\partial r} \left(r v_{\text{kin}} \frac{\partial \rho \Delta \omega}{\partial r} \right) = T$
- The torque is not localized in any specific position but affects globally the entire core
The Non-RMP braking depends on the harmonic.

- The more far from the resonant, the lower the braking.
- The torque has a similar trend.
ASSUMPTION: the NTV theory is valid in the RFP configuration

The code for NTV torque calculation [Sun et al., NF 053015, 51 (2011)] has been adapted to EXTRAP T2R

Ions and electrons are mainly in the collisionless regime

Since $\nu_{*di0} < 1$, ions are mainly in the $\sqrt{\nu}$ or super-banana regime.

Since $\nu_{*de0} > 1$, electrons are mainly in the $1/\nu$ regime.
TORQUE COMPARISON

- Reasonable qualitative agreement in the profile.
- From a quantitative point of view, NTV torque is \(\approx3 \text{ times lower} \).
- Reasonable qualitative trend versus the perturbation harmonic.
CONCLUSIONS and FUTURE WORK

- **Non RMP braking**

 (1) The torque is estimated from experimental velocity braking
 - the Non-RMP torque is not localized in any specific position but affects the entire core
 - the Non-RMP torque decreases as the perturbation harmonic is more far from the resonance

 (2) NTV theory has a reasonable qualitative agreement with the experimental results

 (3) NTV theory predicts a torque 3-4 times lower than the one necessary to obtain the experimental braking

 (4) Future work/open questions:
 - Study the dependence on the non-RMP amplitude.
 - The viscosity is estimated considering only the EM torque.
 - Underestimation of the viscosity?
 - Underestimation of experimental T_{NTV}?
 - The NTV calculation for EXTRAP T2R needs to be extended to the resonant harmonics:
 - How to consider the plasma response?
 - How to consider the perturbation screening?

 This leads us to the next topic…
RMP screening

(1) **Motivation of the work:**
 does the plasma rotation affect the penetration of a RMP?

(2) **The technique:**
 how to modify the plasma rotation without affecting other plasma parameters?
 Using a non-RMP.

(3) **Experimental results:**
 What to look? How to quantify the RMP effect?
 By studying the interaction of a rotating TM with a stationary RMP field for varying plasma rotation velocity.

(4) **Comparison with some theoretical models (preliminary):**
 - Fitzpatrick Guo Wealbroek models
 - Rozhansky model
• Using a non-RMP, the plasma rotation can be modified

• Then, the RMP will be applied during the stationary phase
The technique:

(1) Apply a non-RMP to obtain the “desired” velocity

(2) Apply a RMP to study the TM response

The TM response will depend on:
(a) the RMP (amplitude and harmonic)
(b) the plasma rotation (if the screening occurs)
By modifying the non-RMP amplitude, the plasma rotation is changed.

NO significant variation in: (1) I_p
(2) Impurities
(3) Equilibrium
(4) TM amplitude (see later)

(as long as the perturbation is not too large)
EFFECT ON THE TEARING MODE

- **Reference plasmas:**
 - (a) RMP is NOT applied
 - (b) Non-RMP is used to change the plasma velocity

 No effect on the TM amplitude

- **Plasmas with RMP:**
 - (a) always the same RMP harmonic and RMP amplitude is used: $b_{r1,-12} = 0.6$ mT
 - (b) Non-RMP is used to change the plasma velocity

 At high plasma rotation the RMP effect on the TM seems negligible.

 RMP Screening?
Comparison with theoretical models

- Fitzpatrick, Guo, Wealbroek models:

 for example [Phys. Plasmas 8 4489 (2001)]

 $$\Lambda \frac{\tau_R}{4r_s} c |\dot{\Psi}_s| = f(|\Psi_s|) + \frac{E^r_s E^\nu_w}{|E^\nu_v|} \frac{|\Psi_w|}{\sqrt{|\Psi_s|}} \cos \omega t$$

 assuming constant velocity and large RMP amplitude, the solution is:

 $$b_{TM} \approx \left(\frac{k}{\omega} b_r^{RMP} \right)^{2/3}$$

- Rozhansky model:

 (it considers radial current of electrons in a stochastic field)
 [Nucl. Fusion 51 083009 (2011)]

 $$\frac{b}{B} = \frac{1}{\sqrt{1 + f(B, T_e, n_e) \omega^2}} \frac{b_0^{RMP}}{B}$$

 Both models can give a reasonable agreement with experimental data. More detailed comparisons are in progress.
- **Reference plasma:**
 - TM amplitude approximately constant

- **RMP 0.6mT and fast plasma rotation**
 - the RMP amplifies and suppresses the TM depending on the phase

- **RMP 0.6mT and slow plasma rotation**
 - the TM is amplified and suppressed. But due to the lower rotation, the TM is in a positive phase relation with RMP for a longer time ⇒ stronger amplification
CONCLUSIONS and FUTURE WORK

- **Non-RMP braking**

 (1) The torque is estimated from experimental velocity braking
 - the Non-RMP torque is not localized in any specific position but affects the entire core
 - the Non-RMP torque decreases as the perturbation harmonic is more far from the resonance

 (2) NTV theory has a reasonable qualitative agreement with the experimental results

 (3) NTV theory predicts a torque 3-4 times lower than the one necessary to obtain the experimental braking

- **RMP screening**

 (1) Plasma rotation is modified by applying a non-RMP producing:
 - velocity reduction
 - no significant effect on equilibrium and TM amplitude

 (2) The same technique is used applying a RMP with constant amplitude

 (3) The analysis of the TM amplitude shows a smaller effect of the RMP at high rotation: the plasma rotation clearly affects the dynamics of the TM

 (4) Existing models seem to give a reasonable explanation

 (5) Future work: - increase of the statistic (more plasma shots) and of the velocity scan steps.
 - study of different RMP harmonics
 - more detailed comparison theory-experiment.