Integrated modeling of island growth, stabilization and mode locking

Consequences for NTM control on ITER

Hugo van den Brand, M. de Baar, N.J. Lopes Cardozo and E. Westerhof
Outline

What are the consequences of preventing mode locking for NTM control on ITER?

- Rotation of NTMs
- Generalized Rutherford Equation with ECCD stabilization
- Maximum allowed latency
- Effect of misalignment
NTM control on ITER

- ECCD on ITER
 - Four EC launchers spanning 100° toroidal angle
 - Total power 13.3 MW
 - Destabilizing current drive in X-point likely for locked modes

- Full suppression of islands
- No mode locking (rotation should remain finite)

- Latency and alignment requirements?
- **Rigid body rotation of the island**
 - Speed up by viscous coupling with the bulk plasma
 - Slow down by wall interaction

\[
\frac{d\omega}{dt} = \left(\frac{\omega_0}{\tau_{M0}} - \frac{\omega}{\tau_M} \right) - \frac{1}{m \tau_{A0}^2 C_W \omega} \left(\frac{W}{a} \right)^3
\]

\[
\tau_M = \frac{\tau_{M0}}{1 + C_M \frac{W}{a}}
\]

- **Islands equal to or larger than 5 cm lock**

Rotation model by La Haye et al NF pp. 451 vol 46 2006
Locking of $q=2/1$ modes

Island rotation frequency for constant island widths ($q=2/1$)

Rotation frequency ω [rad/s] vs. Time t [s]

- $w=3$ cm (solid line)
- $w=4$ cm (dashed line)
- $w=5$ cm (dotted line)
- $w=6$ cm (dashed-dotted line)
Locking time comparable to growth time

![Graph showing the relationship between locking time and island width. The graph plots locking time and growth time at locking width as a function of island width. The x-axis represents island width (w) in meters, ranging from 0 to 0.3. The y-axis represents the logarithm of locking time (t) in seconds, ranging from 10^{-2} to 10^2. The graph indicates that as the island width increases, both the locking time and growth time decrease.]
Island growth

- Generalized Rutherford Equation
- Classical growth rate

\[\frac{\tau_r}{r_s} \frac{dw}{dt} = r_s \Delta'_0 \]
Island growth

- Generalized Rutherford Equation
- Classical growth rate
- Neoclassical bootstrap growth rate
 - Flattening of pressure profile leading to a decreased bootstrap current

\[
\frac{\tau_r}{r_s} \frac{d w}{d t} = r_s \Delta' + \frac{16 \mu_0 L_q r_s j_{BS}}{B_p \pi} \frac{4}{3w} f \left(\frac{w}{w_{\text{marg}}} \right)
\]
Island growth

- Generalized Rutherford Equation
- Classical growth rate
- Neoclassical bootstrap growth rate
 - Flattening of pressure profile leading to a decreased bootstrap current

\[
\frac{\tau_r}{r_s} \frac{dw}{dt} = r_s \Delta'_0 + \frac{16 \mu_0 L_q r_s j_{BS}}{B_p \pi} \frac{4}{3w} f \left(\frac{w}{w_{\text{marg}}} \right)
\]

- Classical growth rate found by relating it to the bootstrap term

\[
\Delta'_0 = -\Delta'_{BS} \left(w = w_{\text{sat}} \right)
\]
Bootstrap term models

NTM growth rate from the Generalized Rutherford Equation for $q=2\cdot1$

Polarization ($w_{marg}=2 \text{ cm}$)

- Island width w [m]
- NTM growth rate $\frac{dw}{dt}$ [m/s]
Bootstrap term models

NTM growth rate from the Generalized Rutherford Equation for $q=2/1$

- Polarization ($w_{marg}=2$ cm)
- Polarization ($w_{marg}=6$ cm)
Bootstrap term models

NTM growth rate from the Generalized Rutherford Equation for $q=2/1$

Graph showing:
- Blue line: Polarization ($w_{\text{marg}}=2 \text{ cm}$)
- Dotted blue line: Polarization ($w_{\text{marg}}=6 \text{ cm}$)
- Red line: Transport ($w_{\text{marg}}=2 \text{ cm}$)

Graph axes:
- Vertical axis: NTM growth rate dw/dt [m/s]
- Horizontal axis: Island width w [m]
Bootstrap term models

NTM growth rate from the Generalized Rutherford Equation for $q=2/1$ for different polarization and transport conditions with marginal island widths of 2 cm and 6 cm.
Bootstrap term models

NTM growth rate from the Generalized Rutherford Equation for $q=2/1$

- Polarization ($w_{\text{marg}}=2 \text{ cm}$)
- Polarization ($w_{\text{marg}}=6 \text{ cm}$)
- Transport ($w_{\text{marg}}=2 \text{ cm}$)
- Transport ($w_{\text{marg}}=6 \text{ cm}$)

$w_{\text{lock}}=5 \text{ cm}$
Electron Cyclotron Current Drive

\[
\frac{\tau_r}{r_s} \frac{dw}{dt} = r_s \Delta'_0 + r_s \Delta'_BS + r_s \Delta'_CD
\]

\[
r_s \Delta'_CD = -K_{CD} P_{EC} F_{CD} \left(w^* = \frac{w}{w_{dep}}, x_{norm} = \frac{x_{dep}}{\max(w, w_{dep})} \right)
\]

ECCD model by De Lazzari et al NF pp. 075002 vol 49 2009
Simulation example

$q = 2/1 \quad w_{\text{seed}} = 4 \text{ cm} \quad \text{(polarization model} \quad w_{\text{marg}} = 2 \text{ cm})$
Simulation example

$q = 2/1, w_{\text{seed}} = 4 \text{ cm} \quad \text{(polarization model} \ w_{\text{marg}} = 2 \text{ cm)}$

- Island width w [m]

- Island rotation ϕ [rad/s]

- Time t [s]
Simulation example

$q=2/1 \quad w_{seq}=4 \text{ cm (polarization model } w_{marg}=2 \text{ cm)}$

$P=13.3 \text{ MW}$

$\theta=0.95 \text{ s}$
Simulation example

$q = 2/1 \quad w_{\text{seq}} = 4 \text{ cm} (\text{polarization model } w_{\text{marg}} = 2 \text{ cm})$

$P = 13.3 \text{ MW}$

Island width w [m]

Island rotation φ [rad/s]

$\varphi = \begin{cases}
0 & \text{if } t_d = 0.90 \text{ s} \\
0 & \text{if } t_d = 0.95 \text{ s}
\end{cases}$
Maximum allowed latency

Polarization ($w_{marg} = 2$ cm)
Maximum allowed latency

- Polarization ($w_{marg} = 2$ cm)
- Transport ($w_{marg} = 6$ cm)
Effect of misalignment on island growth

![Graph showing the effect of misalignment on island growth. The x-axis represents the island width (w [m]), and the y-axis represents the NTM growth rate (dw/dt [m/s]). The graph includes two curves: one for No ECCD and another for x_{dep}=0.0 cm.](image)
Effect of misalignment on island growth

No ECCD

$x_{dep} = 0.0 \, \text{cm}$

$x_{dep} = 0.7 \, \text{cm}$
Effect of misalignment on island growth

![Graph showing the effect of misalignment on island growth. The graph plots island width (w) against NTM growth rate (dw/dt) for different values of x_{dep}. The legend indicates three scenarios: No ECCD, x_{dep} = 0.0 cm, x_{dep} = 0.7 cm, and x_{dep} = 0.8 cm. The graph demonstrates how misalignment affects the growth rate of islands.]
Effect of misalignment on island growth

- Maximum allowed deviation 0.7 cm to 1.0 cm
Effect of misalignment on island growth

- Maximum allowed deviation 0.7 cm to 1.0 cm
- No effect on latency
Conclusions

Due to limited actuator span, mode locking should be avoided

- Dependence of rotation on width requires combined model
- Maximum allowed latency in order of 1 second
- Maximum allowed deviation 0.7 cm to 1.0 cm from GRE
 - Misalignment does not affect latency
- Similar results for 3/2 NTM
- Results relevant for design of ITER NTM controller
 - Reported mirror settling time of 2.5 s is longer

Settling time from Collazos et al IEEE TPS NF pp. 441 vol 38 2010
Terminology

- **Maximum allowed latency** = the longest time between island seeding and start of ECCD deposition that results in full suppression of the island before mode-locking.

- **Mode-locking** = stop of the island rotation, this means that the island locks to the error fields.

- **x_{dep}** = radial misalignment related to the resonant surface position.

- **Island width** = Average of island width on LFS and HFS in the equatorial plane.

- **Locking time** = the time it takes for an island of constant width to stop rotating.
Bootstrap models

\[
\begin{align*}
 f_{\text{tra}}(w, w_{\text{marg}}) &= \left(\frac{w^2}{w^2 + w_{\text{marg}}^2} \right) \\
 f_{\text{pol}}(w, w_{\text{marg}}) &= \left(1 - \frac{w_{\text{marg}}^2}{3w^2} \right)
\end{align*}
\]
Simulation parameters

<table>
<thead>
<tr>
<th>Constants and ITER parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_0</td>
<td>$4\pi \cdot 10^{-7} \frac{N}{A^2}$</td>
</tr>
<tr>
<td>R_b</td>
<td>6.2 m</td>
</tr>
<tr>
<td>a</td>
<td>2.0 m</td>
</tr>
<tr>
<td>κ</td>
<td>1.7</td>
</tr>
<tr>
<td>Z_{eff}</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NTM parameters</th>
<th>$q = 2/1$</th>
<th>$q = 3/2$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r_s</td>
<td>1.55 m</td>
<td>1.3 m</td>
<td>Position of the resonant surface(^{22})</td>
</tr>
<tr>
<td>$j_{BS}(r_s)$</td>
<td>73 kA m(^{-2})</td>
<td>94 kA m(^{-2})</td>
<td>Bootstrap current\cite Bertelli forthcoming(^{68})</td>
</tr>
<tr>
<td>$T_e(r_s)$</td>
<td>5.6 keV</td>
<td>7.6 keV</td>
<td>Electron temperature(^{22})</td>
</tr>
<tr>
<td>$B_p(r_s)$</td>
<td>0.97 T</td>
<td>1.07 T</td>
<td>Poloidal magnetic field(^{22})</td>
</tr>
<tr>
<td>$L_n(r_s)$</td>
<td>0.87 m</td>
<td>0.88 m</td>
<td>Gradient length of the q-profile(^{22})</td>
</tr>
<tr>
<td>w_{marg}</td>
<td>2-6 cm</td>
<td>2-6 cm</td>
<td>Marginal island width\cite Bertelli forthcoming(^{68})</td>
</tr>
<tr>
<td>w_{sat}</td>
<td>32 cm</td>
<td>25 cm</td>
<td>Saturated island width(^{6})</td>
</tr>
<tr>
<td>$w_{LSM , dep}$</td>
<td>2.4 cm</td>
<td>3.7 cm</td>
<td>Deposition width at flux surface with LSM TORBEAM simulation by Bertelli et. al.</td>
</tr>
<tr>
<td>$j_{CD,W , LSM}$</td>
<td>$1.32 \cdot 10^{-2}$ A m(^{-2}) W</td>
<td>$1.22 \cdot 10^{-2}$ A m(^{-2}) W</td>
<td>Current drive density per watt with LSM TORBEAM simulation by Bertelli et. al.</td>
</tr>
<tr>
<td>$w_{LSM , dep}$</td>
<td>3.9 cm</td>
<td>5.5 cm</td>
<td>Deposition width at flux surface with USM TORBEAM simulation by Bertelli et. al.</td>
</tr>
<tr>
<td>$j_{CD,W , USM}$</td>
<td>$9.62 \cdot 10^{-3}$ A m(^{-2}) W</td>
<td>$1.07 \cdot 10^{-2}$ A m(^{-2}) W</td>
<td>Current drive density per watt with USM TORBEAM simulation by Bertelli et. al.</td>
</tr>
<tr>
<td>$\epsilon = \frac{r_s}{R_0}$</td>
<td>0.25</td>
<td>0.21</td>
<td>Inverse aspect ratio</td>
</tr>
<tr>
<td>η_{NC}</td>
<td>$1.44 \cdot 10^{-8}$ Ωm</td>
<td>$7.73 \cdot 10^{-9}$ Ωm</td>
<td>Neoclassical conductivity (equation 2.4)</td>
</tr>
<tr>
<td>τ_i</td>
<td>293 s</td>
<td>383 s</td>
<td>Resistive time scale (equation 2.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$q = 2/1$</th>
<th>$q = 3/2$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0</td>
<td>$420 \cdot 2\pi$ rad/s</td>
<td>$578 \cdot 2\pi$ rad/s</td>
<td>Result of ITER scenario 2 simulations</td>
</tr>
<tr>
<td>τ_{A0}</td>
<td>3.0 μs</td>
<td></td>
<td>Assumes toroidal rotation of the island</td>
</tr>
<tr>
<td>τ_{M0}</td>
<td>$\tau_E = 3.7$ s</td>
<td></td>
<td>Equal to ITER energy confinement time</td>
</tr>
<tr>
<td>τ_w</td>
<td>0.188 s</td>
<td>0.125 s</td>
<td>Resitive wall simulations with VALEN</td>
</tr>
<tr>
<td>C_1</td>
<td>$\frac{1}{14}$</td>
<td>$\frac{1}{11}$</td>
<td>Obtained through fits on DIII-D shots</td>
</tr>
<tr>
<td>C_2</td>
<td>20</td>
<td>12</td>
<td>Obtained through fits on DIII-D shots</td>
</tr>
</tbody>
</table>
Simulation details

- Seed island size varied
- Delay between seeding and start of ECCD varied
- Largest delay that still results in full suppression before locking is the maximum allowed latency

Simulation scenarios

- Polarization 2 cm
- Transport 6 cm

Resolution: dt=50 ms and dw_seed=0.5 cm

Implemented in MathWorks Simulink

- Runga-Kutta 5th order with 4th order error estimate (var. step)
- Rel error 1e-6
q=3/2 latency

![Graph showing the relationship between maximum allowed latency (t) and seed island width (w_{seed}) for different transport and polarization cases.](image)

- **Polarization** (w_{marg} = 2 cm)
- **Transport** (w_{marg} = 6 cm)
- τ_{SM} = 2.5 s
Effect of misalignment on latency

- **No effect**
Extra simulations

Effect of rotation on the allowable latency for $q=2/1$

- Polarization ($w_{\text{marg}} = 2 \text{ cm}$)
- Double rotation
- Transport ($w_{\text{marg}} = 6 \text{ cm}$)
- Double rotation

Effect of ECCD power on the allowable latency for $q=2/1$

- Polarization ($w_{\text{marg}} = 2 \text{ cm}$)
- 10 MW
- 20 MW
- Transport ($w_{\text{marg}} = 6 \text{ cm}$)
- 10 MW
- 20 MW

Effect of modulation on the allowable latency for $q=2/1$

- Polarization ($w_{\text{marg}} = 2 \text{ cm}$)
- Modulation ($D=0.5$)
- Transport ($w_{\text{marg}} = 6 \text{ cm}$)
- Modulation ($D=0.5$)
Stabilization maps $q=2/1$

Detection limits for $q=2/1$ polarization $w_{\text{marg}}=2 \text{ cm}$

Detection limits for $q=2/1$ transport $w_{\text{marg}}=6 \text{ cm}$
Tearing modes

- Flux surfaces characterized by safety factor
 \[q = \frac{m}{n} \]

- Reconnection of magnetic field lines

- Rational values of q
 - q=2/1 (and q=3/2)

- Affected by non-inductive current