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Resistive wall mode stability can be explained by including
kinetic effects ; Code calculations require benchmarking

e Motivation

— Accurate calculation of the physics of RWM kinetic stabilization is
key for disruption-free operation of a low collisionality burning
plasma (ST-CTF, FNSF, ITER) at any rotation.

e Qutline

— Recent resonant field amplification and reduced internal
inductance experimental results in NSTX are consistent with
kinetic stability theory as calculated by the MISK code.

— Kinetic stability calculations are being benchmarked through
comparison with the results of other codes such as MARS-K and
HAGIS. (ITPA MHD Stability group joint experiment MDC-2)

— Corrected stability calculations improve agreement with
experiments in cases tested to date.
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Kinetic terms in the RWM dispersion relation enable
stabilization; theory consistent with experimental results

Dissipation (Im(6W,)) and restoring force (Re(6W,)) (7 — it0,) Ty = W + Wk
from kinetic term enables stabilization of the RWM: o oWy + Wk

[B. Hu et al., Phys. Plasmas 12, 057301 (2005)]

of; _ n Of
00 (& = oig) = = 2= -
W= 3 2vae [ [ [ | W AN | T igan, =y
Pl n{wh) + lwj — il + nwg — w m? B
Precession Drift ~ Plasma Rotation: = Wy = WE + Wy
YT, CONtours Bounce Collisionality
vs. v and o,

10.0 — MISK calculations are consistent with

RWM instability at intermediate
plasma rotation in NSTX

— Instability appears between
precession drift resonance at low wy,

bounce/transit resonance at high w,,
[S. Sabbagh et al., Nucl. Fusion 50, 025020 (2010)]

0.0 0.5 1.0 1:5 2.0

O/o [J. Berkery et al., Phys. Rev. Lett. 104, 035003 (2010)]
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Improving quantitative agreement: EPs are generally
stabilizing; Anisotropic distribution impacts stability

1 Beam ions are anisotropic
SWi ~ , [P -
<(.dD> + lwp — g + WE [ NSTX 121090 @ 0601 s :
80 | %I/ajﬁ\'&ir’n
small for Energetic Particles (EPs) > 60
CR
— EPs provide stabilizing force that is w 40}
nearly independent of w,, 20!
— EPs generally are not in mode ol
resonance, so the effect is not energy -1.0
dissipation, but rather a restoring force
[J.W. Berkery et al., Phys. Plasmas 17, 082504 (2010)] C (¥) e~ (x—x0)?/8x*
0.2F — T T : - f(E?‘ijfX): 3 3 5
Ol—b) 5'5 E g2 + &2 X
E P T unstable ]

f Py -\ Thermal E Addition of simple anisotropy
03F O model (x, = 0.75, 6x = 0.25)
04F — Thermal+Iso EPs E e .
05F - Thermal+Aniso EPs reduces stabilizing effect,

0.0 0.5 10 15 20 consistent with quantitative

W/ Wy, P (marginally stable) comparison to NSTX plasmas
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An NSTX experiment explored RWM stability with w, and EP fraction,
with RFA measurements, for comparison to kinetic theory

w, (kHz)

20T

0.

—
0.65s
0.70s

8 MA 0.75s ]
0.80s

Resonant field amplification (RFA) amplitude is a Bplasma

measure of RWM stability. RFA = B, icd
applie

* w, slowed with n=3 magnetic braking
for various EP fractions (I, B, scan)

— Weak stability region at intermediate w,,
shows in RFA

— Plasma can survive it (left), or not (below).
— Kinetic analysis with MISK was performed.

057 N — Many shots with long, slow, rotation
< M\ ] decreases and many RFA periods were
= 00p FHF'W A Vﬂ" obtained.
i RN
871 ] - 1.1 MA 140103 @ 0.856 s 1
T _M_/__/WJ-L/_—“‘"’“—"“’—’\i‘?—l_ﬂj 30 unstable 140106 @ 0.816 s |
& 4 C R R 140107 @ 0.666 s ]
| E »o Stable e 140104 @ 0.536 s 1
15 g = S5 T :
§) b ] 8 + ‘... e
o Lot m\”"\h . 10 - el gl -
P ] "~ unstable unstable $3ag, .
g g.zé— At \\M\m 0 . | | Sttasende.
“oa 05 08 11 1.0 1.1 1.2 1.3 1.4 1.5
Time (s) R (m)
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Kinetic stability calculations show reduced stability in low |.
target plasma as w,, is reduced, RWM becomes unstable

e Sta bl|lty evolves MISK code RWM stability vs. w, (contours of yt, )
— MISK computation shows 0o T T 140132"t;j;(_)js
plasma to be stable at time w/fast particles ,, ||
£ mini | thermal \ L ° 04
of minimum |, w0z N b N |eos
— Region of reduced stability e “20 1
% L \. |
vs. wy, found before RWM 3 Wyl W™, 1
becomes unstable (I, = 0.49N a0 |
e Co-incident with a drop in 00 e\ ar inz;“-l |
l edge density gradient — . stabgility"'- |
reduces kinetic stabilization ' B N N
B | o0, unstable Ol (experiment)
10} | 140132 @ 0.482 s 0.00 0.03 0.06 0.09 0.12
: g Re(oWy)

140132 @ 0.698

— Directly testing the RWM stability
calculation at the marginal point in this
NSTX experimentally unstable plasma.

n. (10" m”)

— This past calculation showed close, but not
full, quantitative agreement.

[S.A. Sabbagh et al., APS Invited 2010 paper GI2.01] * Investigating what might lead to improvement...
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Kinetic stability calculations are improved by additional
physics and code development

e Additional physics (EPs) improves Corrected wy
mOdeli but doesn’t bring full RWM stability vs. w, (contours of yt, )
agreement 0.06 120152, 1= .704% N
— Also improves understanding of Vi, =00 w/fast pa‘f‘tides :?3:;21
differences between devices (see: - ® 06 |
[S. Sabbagh et al., IAEA FES 2010, R 0 TN s e
Paper EXS/5-5], [H. Reimerdes etal., 2 | #7 14 |
Phys. Rev. Lett. 106, 215002 (2011)]) & s
002 We/We,P N
e Correction to w, from MDC-2 r:taaLgl'lgl
benchmarking further improves - f‘”ftatf'e - (Iexperijmelﬁjt)
agreement (benchmarking 0.00 002 oos 006 0.08
investigation results later in the
talk...)
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MDC-2 Benchmarking of kinetic models: overview & steps

Codes: HAGIS, MARS-K, MISK

Choice of equilibria for benchmarking
Spring 2011

=1 Start by using Solov’ev |

e HAGIS / MARS-K, and MISK / MARS-K benchmarked to different degrees using Solov’ev
equilibria; collect/cross compare results
— HAGIS/MARS results published [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)]

e Simplicity may lead to unrealistic anomalies — better to use realistic cases?

— Move on to ITER-relevant equilibria

e Use Scenario IV, or new equilibria recently generated for WG7 task by Y. Liu (more
realistic; directly applicable to ITER)

— Need kinetic profiles as well as fluid pressure
e | Approach to stability comparison — start with
— ideal fluid quantities (§Wno-wall §wwall "etc.)

— n=1(consider n>1in a future step)

— perturbative approach on static eigenfunction input - ensure that unstable
eigenfunction is consistent among codes (e.g. no-wall ideal for MISHKA)

— no-wall / with-wall B limits (equilibrium B scan needed)

Fall 2011
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Started code comparison with simple equilibria and profile

assumptions

Solov’ev case 1 (near-circular)

Solov’ev case 3 (shaped)

! a5 06 L B S S B
02F — a) 0.5} ' N b) -
/’”'/- """ 2, 04+ -
: / \ 03 [ R=008
0.1 [/ ur=008 ___ \ y 02k [ / ___\"‘\ \ J
,"l / ; y - g . \ \ II III,-’ - e, .\\ \
_ III' I' . .-’// ) \l._‘\_. \"-.I ".II ] 0.1 || .'II ’ ﬁ\ ..\.‘"ll I|I
E 00 uE & 4 E 00 | te) | |
N | | ¢ L 002 /r . II IN o1 || l'., \ '_/-,_:- Fo
01 \\ 018 / 1 .03 II'\ "'_""{18 /
NN 04 \ /
02F — 105 \\ e
_|| |-||||.....I-........I.-.......||||||||||_ '06 | | | | 1 ‘I‘_‘_T'- | | | |
07 08 09 10 11 12 0203040506070809101.1121314
R [m] R [m]
1+ K2
poP($) = g, F($) =1
K1itgqo
K R2 Z2 1 2 2\ 2 2 2
2R3q0 | K 1
w*N—I—(é—%)w*T-i-wE A5 g s
Wy £ze “dé
(wp) + lwp, + wg

e Common ground
for codes (MARS /
HAGIS / MISK)

Solov’ev equilibria

Codes runin
perturbative mode

Density gradient
constant

No energetic
particles

Wy, V) Vesr = 0

Simplified resonant denominator due to assumptions
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Expanded comparison to include ITER equilibrium

e More realistic case (ITER)

— ITPA MHD WG7 equilibrium

* 1,=9MA, B =2.9(7% above
n =1 no-wall limit)

— Codes run in perturbative
mode

— With/without energetic
particles

= Wp VY, Vegr = 0

5WKOC/

Note: Simplified resonant denominator
due to assumptions

WxN T+ (é\_ %) WsT + WE
(wp) + lwp + wg

5 o_p o
£2e “dé

@D NSTX 16t Workshop on MHD Stability Control — Validation of RWM Kinetic Stability Model (Berkery) November 20, 2011 10



Shaped vs. near-circular Solov’ev cases have important q
profile differences for benchmarking

Solov’ev case 1 (near-circular) Solov’ev case 3 (shaped)
50 T T 35[0
1.4E 30!
13] _ :
o - 1T 257
1.2} | :
1k 1 201
1-0: L L L 1 L L L | L L L | L L L | L L L : 1-5: L L L | L L L | I L L | L L L | L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
R pd
e No n =1 rational surfaces e Simple, key n =1 rational
— Eliminates potential differences surfaces
between calculation of kinetic — g =2, 3 surfaces in the plasma

dissipation at rational surfaces

e |TER equilibrium:rev. shear,q,~2.2,q,,,~1.7,9,~ 7.1

Differences in how MARS, MISK, HAGIS consider mode dissipation at rational
surfaces is thought to be key — will be a main focus of next steps
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Eigenfunction benchmarking calculations were made to
yield similar eigenfunctions, which are verified

Solov’ev case 1 (near-circular) Solov’ev case 3 (shaped) ITER
1.0 1.0 Lopr T
1=
i'll:.— £ ms=.2Z m=.2
08F m=3 08F m=3 08F m=3
0 6 :_ m==~6 0 6 :_ m==~6 0 6 :_ m==~6 _:
g I g I s ]
el i B, [ el Vs 1
S 041 S 041 < 04F ST __ 1
> > > ]
& & & '
wr0.2 w02 wr0.2 Q \
| i | K\ o
0.0 0.0 = 0.0 ——— §,_
L = MARS-K * PEST L = MARSK " PEST q=3: | L = MARS-K * PEST q=2i 3. i
020 e e 020 v e 020 e
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
I_I_Jnl.-"l I_I_Jnl.-"l I_I_Jnl.-"l

e PEST, MARS-K compared with-wall RWM

— In PEST we use the wall position that yields marginal stability
— PEST, MARS-K, and MISHKA compared for no-wall ideal kink

e There are some differences at rational surfaces
— May lead to stability differences between MISK and MARS calculations
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Bounce frequency vs. pitch angle compares well between
codes

Solov’ev case 1 (near-circular) Solov’ev case 3 (shaped)
100~ "~ T T 7731 100 T T T

T T T T TTIT

" r/R,=0.33

m,/(2e/m)"” [rad/(m/s)]

0.10¢ 1 910F circulating E
[ MARS-K circulating | s ] - mgﬁg{s_}( - il
[ MISK particles trapped P trapped I
O'O‘I .““. Clylilniljer N T 0.01 .. {.:y;llr..ld.er [ U S ST B
00 02 04 06 08 10 12 00 02 04 06 08 10 12 14
A=u B,z A=pBi/e
W V2e,AB; = | — ABy+¢,ABy]?
— = - trapped b= r
v/ 2e/m; dqRy  K(k) (trapped) 26, ABg
b VI-ABo+eABy  m (circulating) large aspect ratio approximation
= a— irculating | ximati
vV 2e/m; 2q Ry K(1/k) —— =

here, €, is the inverse aspect ratio, s is the magnetic shear, Kand E are the complete elliptic integrals of the
first and second kind, and A = uB,/g, where p is the magnetic moment and € is the kinetic energy.
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Significant issue found: precession drift frequencies did not

dagree
Solov’ev case 1 (near-circular) Solov’ev case 3 (shaped)
205 hloes ] 205' TR—033 T
— PF B L 3 E
T 10} e 4 10F ;
o r - 7] F E‘ P ]
& 58 T E ) s S SR E
T oF P / 1 ot < = ]
2 F // _marsk 1 F — MARSK 1
108 [ —MISK 3 -10F — MK
s | a ICyIIinfjer I I - Cylinder -
0.90 0.95

1.00 1.05 1.10 05/ 0e~0.7 08 09 10 11 12 1.3
A=uB/e A= B./e

e (lear difference in drift reversal point, even in near-circular case

e |ssue found and corrected: metric coefficients for non-orthogonal
grid incorrect in PEST interface to MISK

large aspect ratio approximation

(wD) _ 2qA
e/e RZ Bye,

E (k?
(25 +1) ( ) + 2s (k2 — 1) - = e A Phys. Plasmas 15,

1] - [1—A+€TA]% [Jucker et al.,
2 s
Fo ° 112503 (2008)]
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Significant issue resolved:
The precession drift frequencies now agree

Solov’ev case 1 (near-circular) Solov’ev case 3 (shaped)

20; n‘RD:[}.[}BI ] 205' Ir!I'Fé.JI:I[II&.éISI 5 IE 1 5T o B
. 15F 4 15F E
T 10f B I ()2 E
o - e :
& 5F o 1 sf E
SE-. 0 i_ ____________ = fi?_{_ ___________________ ] 0 ;‘ """"" ) '__-:'__-__-_- e o m———T
ERR I — MARSK | F 4 — MARSK ]

e — MISK 4 10F — MISK ]

-15 : Illl Cylinder ] 15 - Cylinder ]

0.90 0.95 1.00 1.05 1.10 05 06 07 08 09 10 11 12 1.3
A= LL BD.I’EZ A= Lt BG/'E;

e Metric coefficients corrected in PEST interface to MISK

1 [ 1 1 o)
wp = —— / L vp - (Vé—§Ve)de — —/ ado.
™) v ™ Joco
if W and 6 are orthogonal: But in PEST, W and O are non-orthogonal:

oy (Bs- V) (By x VH) B x v - —D0 Y0 (B, Vo (B, x VD)
4B x V0 = B, - V4 BxV (B, - Vo Be-VQ)( s xV 0 *V
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How does w, correction effect NSTX results? Mostly affects outer
surfaces; characteristic change of yt,, with w, is the same.

- gg; NSTX 140132 @ 0.704s, ¥/¥, = 0.1 - g’g NSTX 140132 @ 0.704s, WP, =05 - g’g NSTX 140132 @ 0.704s, outer surface — New |
o 40 v 400 v 407
= 30 30 | E 300
N 20 N 20 N 20
Z 0 — Z 0 | Oz o0
S -10° — New E c -10¢1 — New E c -10¢1

20000 - A -20 v 2000

0.9 1.0 1.1 1.2 1.3 1.4 05 06 0.7 08 09 1.0 1.1 12 13 14 00 02 04 06 08 10 12 14
A=uB,/¢ A=uB,/¢ A=uB,/¢
RWM stability vs. w, (contours of yt,.)
0] W, .
Oy IO [ o Affects magnitude of 6W,,
02 but not trends
\\ ® 06 | .

N S N D L In this case, agreement
—_ e 12 . .
z 4 with the experimental
E/ ® 18 || . . .
- marginal point improves

Marginal ' — Calculations continue to
| stability in | determine the effect of the
0.00 ~ experiment’ correction on wider range of cases
0.00 0.03 0.06 0.09 0.12

Re(3W,)
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Benchmarking process is now at the point of determining
agreement in components of stability computations

Work in proxgressI

ra/@ |ldeal 8W | Re(6W,) Im(6W,) YT, (V)
/(-6W.) | /(-8W..) /(-6W..)

Solov’ev 1

(MARS-K) 1.187 0.0256 -0.0121 0.804 -0.0180
(MISK) 1.122 0.0243 0.0280 0.850 -0.0452
Solov’ev 3 1.10

(MARS-K) 1.830 0.208 -0.343 0.350 -0.228
(MISK) 2.337 0.371 0.060 0.232 -0.027
ITER 1.50

(MARS-K) 0.682 141.5 2.286 -0.988 0.00019
(MISK) 0.677 0.665 -0.548 0.071 0.437

e Calculations from MISK, and MARS-K (perturbative)
on ideal 8W, Solov’ev 1 Re(6W,), vyt
on Solov'ev 3
ITER result

wall
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Physics Reduced collisionality (v) is stabilizing for
Implications RWMs, but only near kinetic resonances

RWM growth rate contours (yt,)
o1 T T T T T T T ] 10.0F <.~ B

:J>, 0.0 __'x;_;'ii;:{' """""""""""""""" """""""""'"'"é__ Stability / r_/\ w = q
g - ‘ 5/
C 01F 1 £ I‘g'l

_ QY . off ] - ,
ueo 022 \/ resonance | f}
% 0.3F . _ \(f
® g4 140132 @ 0.704 0.1 ~

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0,/ 0, OO

e NSTX-tested kinetic RWM stability theory: 2 competing effects at lower v
— Stabilizing collisional dissipation reduced (expected from early theory)
— Stabilizing resonant kinetic effects enhanced (contrasts early RWM theory)

e Expectations in NSTX-U, tokamaks at lower v (ITER)
— Stronger stabilization near w,, resonances; almost no effect off-resonance

— Plasma stability gradient with rotation increases
e important to avoid unfavorable rotation, suppress transient RWM with active control

[J. Berkery et al., Phys. Rev. Lett. 106, 075004 (2011)]
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Physics ITER requires alpha particles for RWM
Implications stability across all rotation values

T, _CONtours vs. B2 and @,

old (incorrect) w,

new (correct) wp

0.207 0.207
0.15 0.15
< 0.10 0.10
= _ _
0.05} 0.05}
0.00 L 0.00 L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0002040608101214161820

Polevoi Polevoi

/0, /0,
ITER requires alpha particles for stabilization across all

rotation values.

— Quantitatively different, but generally consistent with previously analyzed case
(in: [J.W. Berkery et al., Phys. Plasmas 17, 082504 (2010)])

e Correction to wy makes calculation more stable, but
doesn’t affect the general conclusions
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RWM kinetic stability model is being validated by comparison to
experiments and is being benchmarked with other codes

e Benchmarking:

— Early NSTX calculations found some quantitative differences
between marginal point and experiment.

— Improved results, with additional physics (such as EPs) and code
improvements, better match experiments.

— Benchmarking exercise led to correction of w calculation.
e Physics implications:

— Energetic particles needed for quantitative agreement with
NSTX; EP distribution matters.

— Stronger stabilization near w, resonances in low v devices.
— Alpha particles required for stability at all wg, in ITER.

Supported by U.S. Department of Energy Contracts: DE-FG02-99ER54524, DE-AC02-09CH11466, and DE-FG02-93ER54215
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Benchmarking process is now at the point of determining
agreement in components of stability computations

Work in progress!

r,./a | ldeal SW | Re(6W,) IMm(SW,)/ | vty
/(-8W.) | /(-6W..) (-6W..)

Solov'ev 1

(MARS-K) 1.187 0.0256 -0.0121 0.804
(MISK) 1.122 0.0243 0.0280 0.850
Solov’ev 3 1.10

(MARS-K) 1.830 0.208 -0.343 0.350
(MISK) 2.337 0.371 0.060 0.232

e Calculations from MISK, and MARS-K (perturbative)
on ideal 8W, Solov’ev 1 Re(6W,), yt
on Solov'ev 3
Im(6W,) — may have a simple explanation

wall
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Bounce and precession drift frequency radial profiles agree
(deeply trapped regime shown)

m,/(2e/m)" [rad/(m/s)]

Bounce frequency

0.35 fF——= :
r olovev g
0.30F o MARSK ° E
f| o MISK
0'255_ - Deep. Tr. o . _ -:
0.20f - E
0.15F :
- Solovev 3 |3
0.10 o e MARS-K |3
0.05F o MISK® 13
0.00 — Deep. Tr. |3
0.0 0.2 0.4 0.6 0.8 1
r/a

Deeply trapped limit

Wh

1
V2e/m; Qo (1 + 2¢r

F?

gy —1
KZe2
+ —
dn

Precession drift frequency

e Good agreement across entire radial profile

10°F ' ' —
i Solovev 1
o MARS-K
% 102;”- o MISK .
35 - / Deep.Tr.
E L
— 10I5 %%H@ AL 3
S S
= . Solovev 3 T e S 1
3 10°E| « MARS-K T3
- | o MISK
jorpleee e
.0 0.0 0.2 04 0.6 0.8 1.0
r/a
: 3
Po e (-8
5 5 + 53 (1+ 2¢,)
2(1+ 2€) do 24y
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The kinetic term can be split into two pieces that depend on
the eigenfunction or the frequencies, for code comparison

\/7 .HT BD,/BDIIH

‘@mdw

By

Wy =
Solov’ev case 1 (near-circular) Omeax
0'25 /R=008 L. Perturbed Lagrangian
0.1F -3 N
N i T o (. A1) 2—‘3— (K-&1)
ol e 5 | e gls)
T i I — =1 ]
T oaf I e Depends mostly on the
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Latest NSTX experiments: Maximum RFA amplitude does

not monotonically increase with i mcreasmg BN
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e Examine resonant field amplification (RFA) amplitude to
determine proximity to the marginal point

— shows increased stability at intermediate B (~5.2 —5.8).

e |n other machines (DIII-D, JET) RFA increases with 3
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RFA response is greater with more peaked w,, at lower (3

e RFA response observed 8-g:be.ow P | 137816 1
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Above the no-wall limit, RWM stability dependence on w,
profiles is complex

e More specifically, RWM 0.6

“below n=1 no wall limit | 137816 °
stability / RFA depends on 5 O . ﬂa e
energy dissipation due to J 8;: 137805 3
kinetic resonances < 020 R
— Depends on w,, profile. = 8(1)— x —
— Sensitivity to rotation in the 30 10 \ 0 55
outer surfaces where the RWM ¢ Peaked rotation B
is large less stable
20~ — \
e Alteration of amplitude and 15 S \\ road rorster
time history of appliedn =3 sl
field creates w,, profile i’ 10;
variation 4
e Further characterization of the 2,0 11 12 13 14
approach to RWM marginal R (m)

stability is underway
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