

Validation of RWM Kinetic Stability Model and Physics Implications in NSTX

J.W. Berkery, S.A. Sabbagh

Department of Applied Physics, Columbia University, New York, NY, USA

R. Betti, R.E. Bell, A. Diallo, S.P. Gerhardt, B.P. LeBlanc, J. Manickam, and M. Podestà

Princeton Plasma Physics Laboratory, Princeton, NJ, USA

Y.Q. Liu, I.T. Chapman

Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK

J.P. Graves

Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, 1015 Lausanne, Switzerland

Z.R. Wang

Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione Corso Stati Uniti 4, 35127 Padova, Italy

*College W&M
 Colorado Sch Mines
 Columbia U
 CompX
 General Atomics
 INL
 Johns Hopkins U
 LANL
 LLNL
 Lonestar
 MIT
 Nova Photonics
 New York U
 Old Dominion U
 ORNL
 PPPL
 PSI
 Princeton U
 Purdue U
 SNL
 Think Tank, Inc.
 UC Davis
 UC Irvine
 UCLA
 UCSD
 U Colorado
 U Illinois
 U Maryland
 U Rochester
 U Washington
 U Wisconsin*

*Culham Sci Ctr
 U St. Andrews
 York U
 Chubu U
 Fukui U
 Hiroshima U
 Hyogo U
 Kyoto U
 Kyushu U
 Kyushu Tokai U
 NIFS
 Niigata U
 U Tokyo
 JAEA
 Hebrew U
 Ioffe Inst
 RRC Kurchatov Inst
 TRINITI
 KBSI
 KAIST
 POSTECH
 ASIPP
 ENEA, Frascati
 CEA, Cadarache
 IPP, Jülich
 IPP, Garching
 ASCR, Czech Rep
 U Quebec*

Resistive wall mode stability can be explained by including kinetic effects ; Code calculations require benchmarking

- Motivation
 - Accurate calculation of the physics of RWM kinetic stabilization is key for disruption-free operation of a low collisionality burning plasma (ST-CTF, FNSF, ITER) at any rotation.
- Outline
 - Recent resonant field amplification and reduced internal inductance experimental results in NSTX are consistent with kinetic stability theory as calculated by the MISK code.
 - Kinetic stability calculations are being benchmarked through comparison with the results of other codes such as MARS-K and HAGIS. (ITPA MHD Stability group joint experiment MDC-2)
 - Corrected stability calculations improve agreement with experiments in cases tested to date.

Kinetic terms in the RWM dispersion relation enable stabilization; theory consistent with experimental results

Dissipation ($\text{Im}(\delta W_K)$) and restoring force ($\text{Re}(\delta W_K)$) from kinetic term enables stabilization of the RWM:

$$(\gamma - i\omega_r) \tau_w = -\frac{\delta W_\infty + \delta W_K}{\delta W_b + \delta W_K}$$

[B. Hu *et al.*, Phys. Plasmas **12**, 057301 (2005)]

$$\delta W_K = \sum_j \sum_{l=-\infty}^{\infty} 2\sqrt{2}\pi^2 \int \int \int \left[|\langle H/\hat{\varepsilon} \rangle|^2 \frac{(\omega - n\omega_E) \frac{\partial f_j}{\partial \varepsilon} - \frac{n}{Z_j e} \frac{\partial f_j}{\partial \Psi}}{n\langle \omega_D^j \rangle + l\omega_b^j - i\nu_{\text{eff}}^j + n\omega_E - \omega} \right] \frac{\hat{\tau}}{m_j^{\frac{3}{2}} B} |\chi|^{\hat{\varepsilon}^{\frac{5}{2}}} d\hat{\varepsilon} d\chi d\Psi, \quad \chi = v_{\parallel}/v$$

- MISK calculations are consistent with RWM instability at intermediate plasma rotation in NSTX
- Instability appears between precession drift resonance at low ω_ϕ , bounce/transit resonance at high ω_ϕ

[S. Sabbagh *et al.*, Nucl. Fusion **50**, 025020 (2010)]

[J. Berkery *et al.*, Phys. Rev. Lett. **104**, 035003 (2010)]

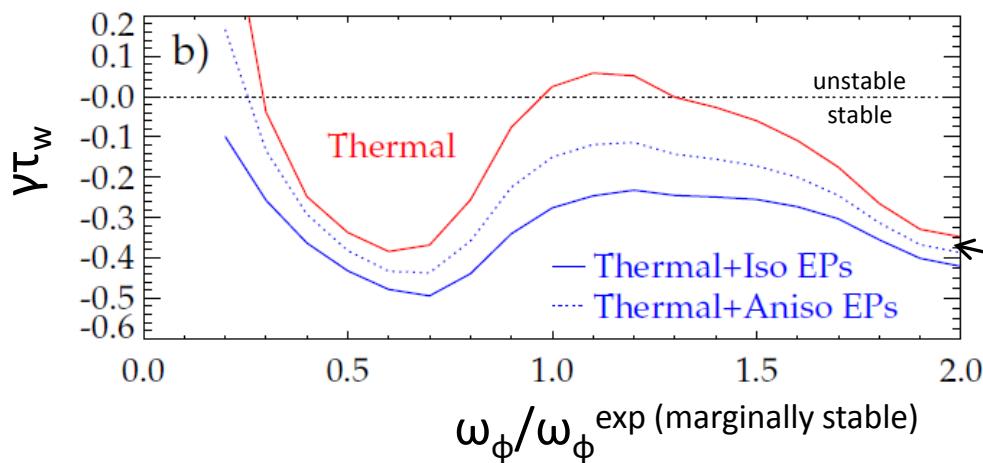
Improving quantitative agreement: EPs are generally stabilizing; Anisotropic distribution impacts stability

$$\delta W_K \sim \left[\frac{1}{\langle \omega_D \rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E} \right]$$

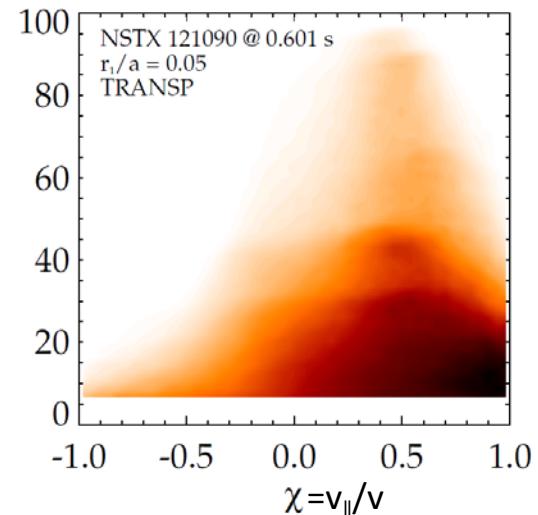
small for Energetic Particles (EPs)

- EPs provide stabilizing force that is nearly independent of ω_ϕ
- EPs generally are not in mode resonance, so the effect is not energy dissipation, but rather a restoring force

[J.W. Berkery *et al.*, Phys. Plasmas **17**, 082504 (2010)]



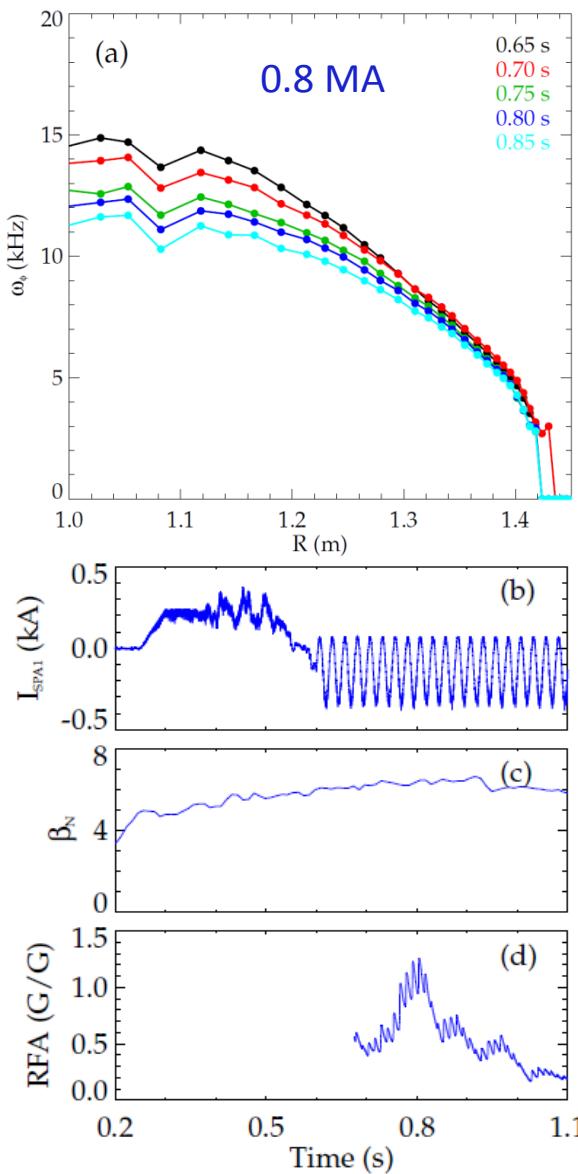
Beam ions are anisotropic



$$f(\varepsilon, \Psi, \chi) = \frac{C(\Psi)}{\varepsilon^{\frac{3}{2}} + \varepsilon_c^{\frac{3}{2}}} \frac{e^{-(\chi - \chi_0)^2 / \delta \chi^2}}{\delta \chi}$$

Addition of simple anisotropy model ($\chi_0 = 0.75$, $\delta\chi = 0.25$) reduces stabilizing effect, consistent with quantitative comparison to NSTX plasmas

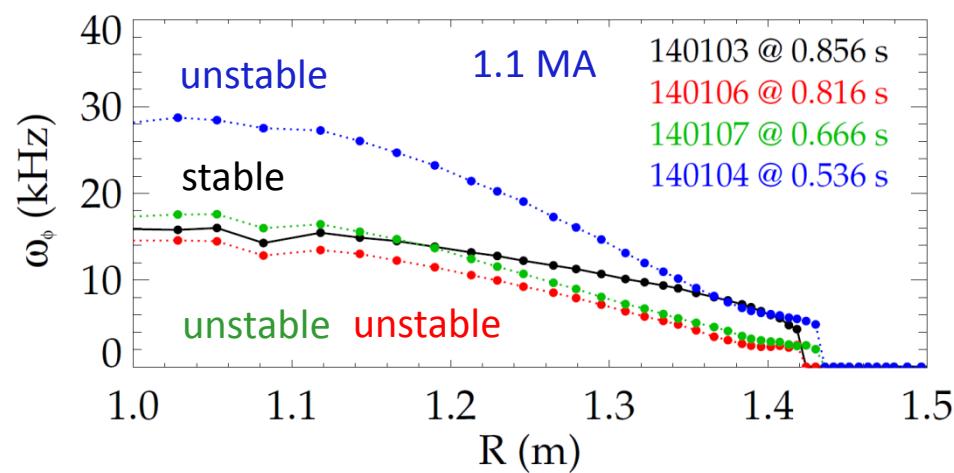
An NSTX experiment explored RWM stability with ω_ϕ and EP fraction, with RFA measurements, for comparison to kinetic theory



Resonant field amplification (RFA) amplitude is a measure of RWM stability.

$$RFA = \frac{B_{plasma}}{B_{applied}}$$

- ω_ϕ slowed with $n=3$ magnetic braking for various EP fractions (I_p , B_t scan)
 - Weak stability region at intermediate ω_ϕ shows in RFA
 - Plasma can survive it (left), or not (below).
 - Kinetic analysis with MISK was performed.
 - Many shots with long, slow, rotation decreases and many RFA periods were obtained.

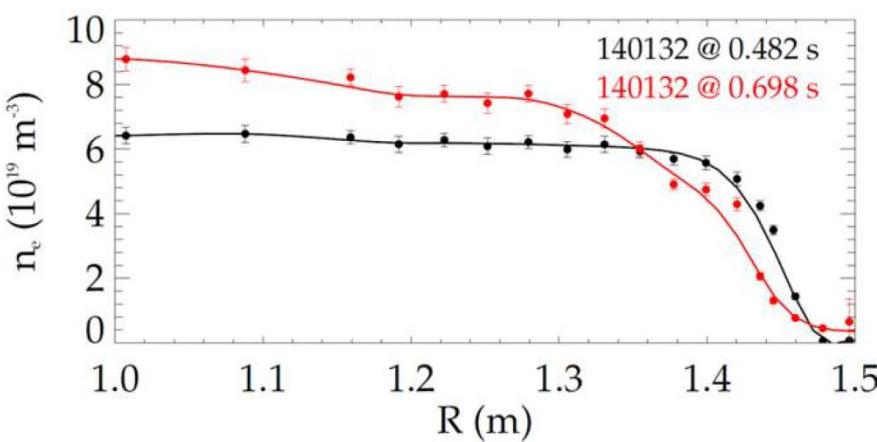


Kinetic stability calculations show reduced stability in low I_i target plasma as ω_ϕ is reduced, RWM becomes unstable

- Stability evolves

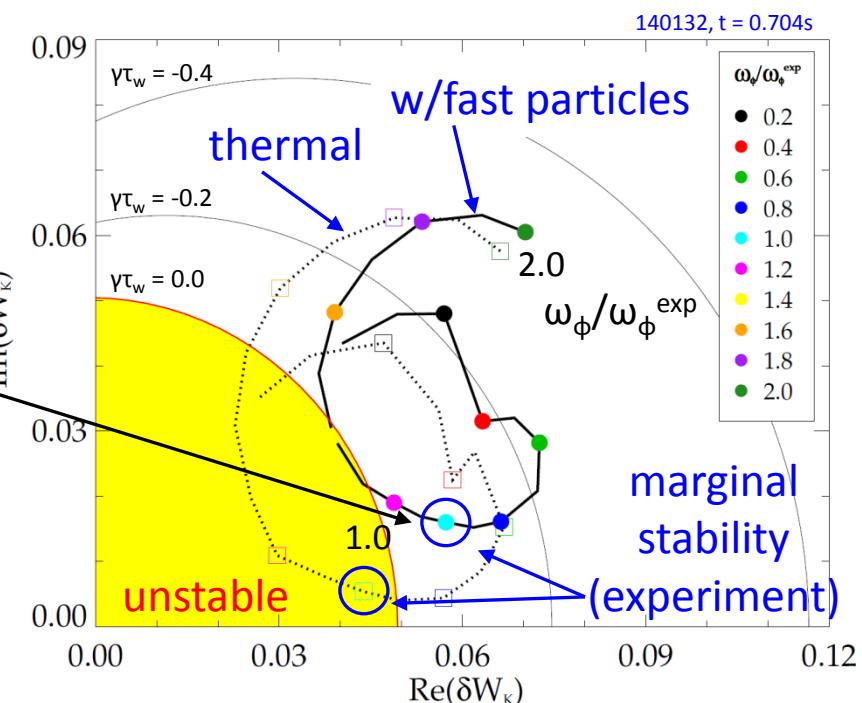
MISK code

- MISK computation shows plasma to be stable at time of minimum I_i
- Region of reduced stability vs. ω_ϕ found before RWM becomes unstable ($I_i = 0.49$)
 - Co-incident with a drop in edge density gradient – reduces kinetic stabilization



[S.A. Sabbagh *et al.*, APS Invited 2010 paper GI2.01]

RWM stability vs. ω_ϕ (contours of $\gamma\tau_w$)

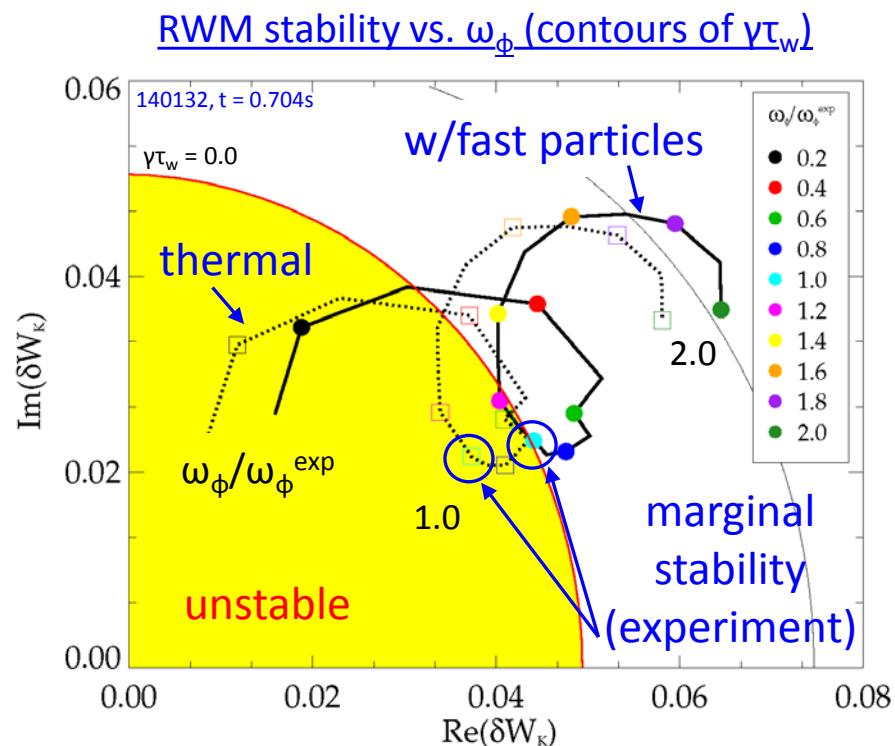


- Directly testing the RWM stability calculation at the marginal point in this NSTX experimentally unstable plasma.
- This past calculation showed close, but not full, quantitative agreement.
 - Investigating what might lead to improvement...

Kinetic stability calculations are improved by additional physics and code development

- Additional physics (EPs) improves model, but doesn't bring full agreement
 - Also improves understanding of differences between devices (see: [S. Sabbagh *et al.*, IAEA FES 2010, Paper EXS/5-5], [H. Reimerdes *et al.*, Phys. Rev. Lett. **106**, 215002 (2011)])
- Correction to ω_D from MDC-2 benchmarking further improves agreement (benchmarking investigation results later in the talk...)

Corrected ω_D



MDC-2 Benchmarking of kinetic models: overview & steps

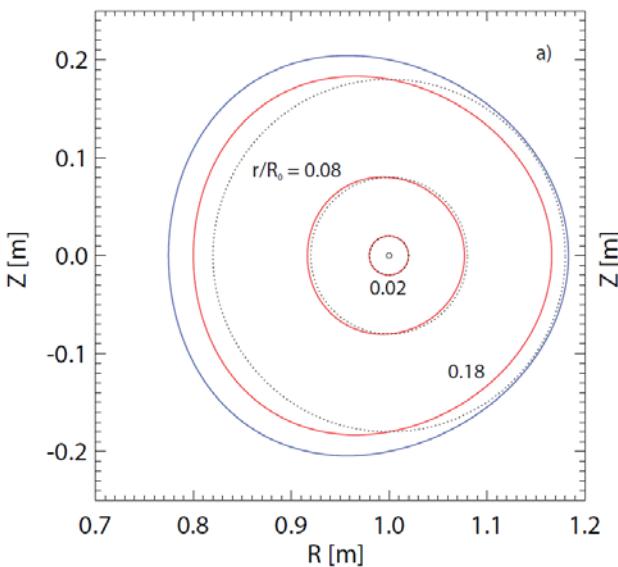
- Codes: HAGIS, MARS-K, MISK
- Choice of equilibria for benchmarking
 - Start by using Solov'ev
 - HAGIS / MARS-K, and MISK / MARS-K benchmarked to different degrees using Solov'ev equilibria; collect/cross compare results
 - HAGIS/MARS results published [Y. Liu et al., Phys. Plasmas **15**, 112503 (2008)]
 - Simplicity may lead to unrealistic anomalies – better to use realistic cases?
 - Move on to ITER-relevant equilibria
 - Use Scenario IV, or new equilibria recently generated for WG7 task by Y. Liu (more realistic; directly applicable to ITER)
 - Need kinetic profiles as well as fluid pressure
- Approach to stability comparison – start with
 - ideal fluid quantities ($\delta W^{\text{no-wall}}$, δW^{wall} , etc.)
 - $n = 1$ (consider $n > 1$ in a future step)
 - perturbative approach on static eigenfunction input - ensure that unstable eigenfunction is consistent among codes (e.g. no-wall ideal for MISHKA)
 - no-wall / with-wall β_N limits (equilibrium β scan needed)

Spring 2011

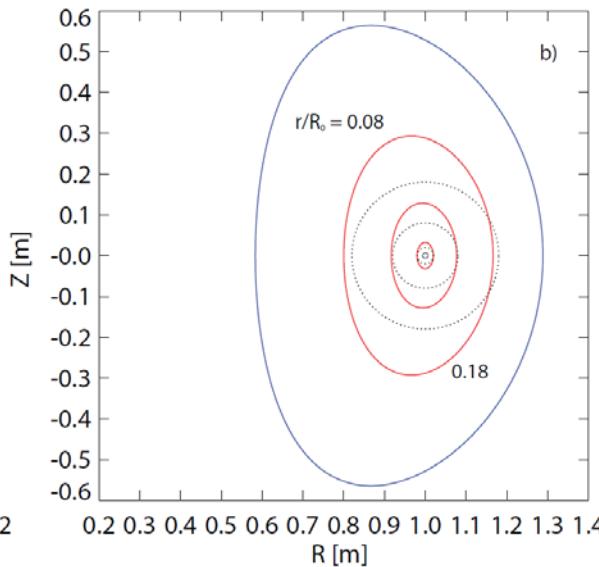
Fall 2011

Started code comparison with simple equilibria and profile assumptions

Solov'ev case 1 (near-circular)



Solov'ev case 3 (shaped)



$$\mu_0 P(\psi) = -\frac{1 + \kappa^2}{\kappa R_0^3 q_0} \psi, \quad F(\psi) = 1$$

$$\psi = \frac{\kappa}{2R_0^3 q_0} \left[\frac{R^2 Z^2}{\kappa^2} + \frac{1}{4} (R^2 - R_0^2)^2 - a^2 R_0^2 \right]$$

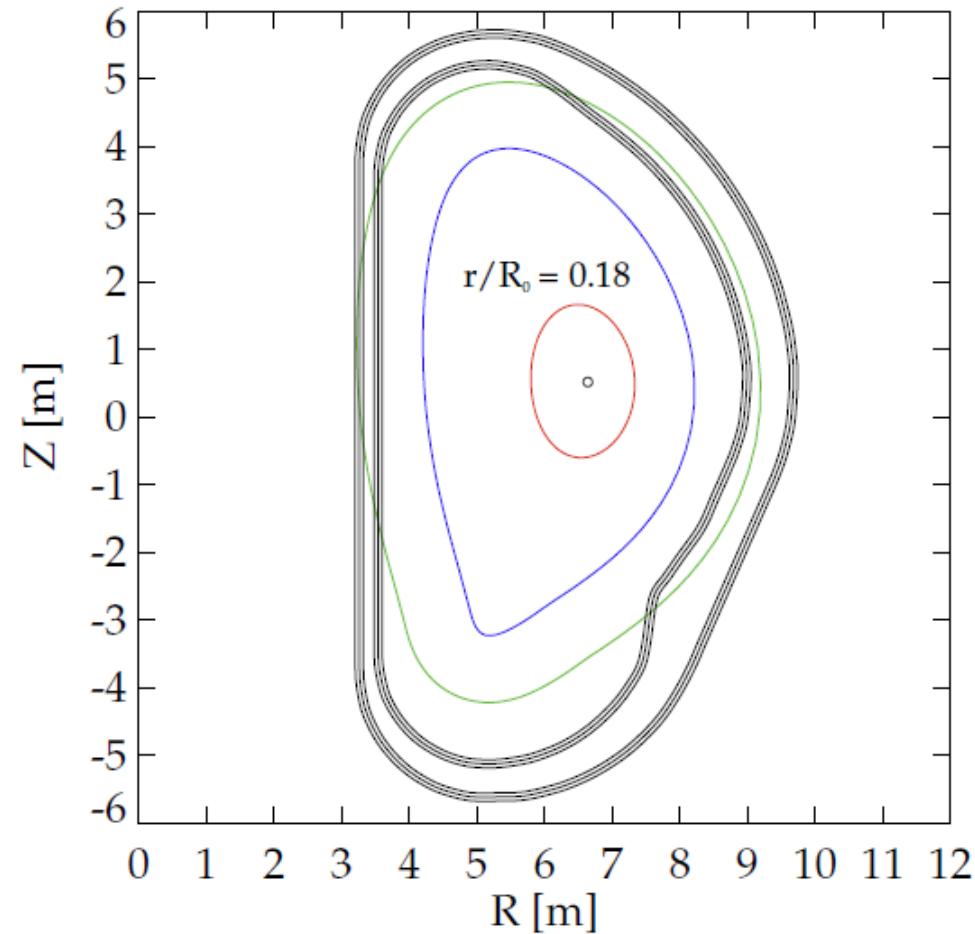
$$\delta W_K \propto \int \left[\frac{\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2}\right) \omega_{*T} + \omega_E}{\langle \omega_D \rangle + l\omega_b + \omega_E} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}$$

Simplified resonant denominator due to assumptions

- Common ground for codes (MARS / HAGIS / MISK)
 - Solov'ev equilibria
 - Codes run in perturbative mode
 - Density gradient constant
 - No energetic particles
 - $\omega_r, \gamma, v_{\text{eff}} = 0$

Expanded comparison to include ITER equilibrium

- More realistic case (ITER)
 - ITPA MHD WG7 equilibrium
 - $I_p = 9 \text{ MA}$, $\beta_N = 2.9$ (7% above $n = 1$ no-wall limit)
 - Codes run in perturbative mode
 - With/without energetic particles
 - $\omega_r, \gamma, v_{\text{eff}} = 0$

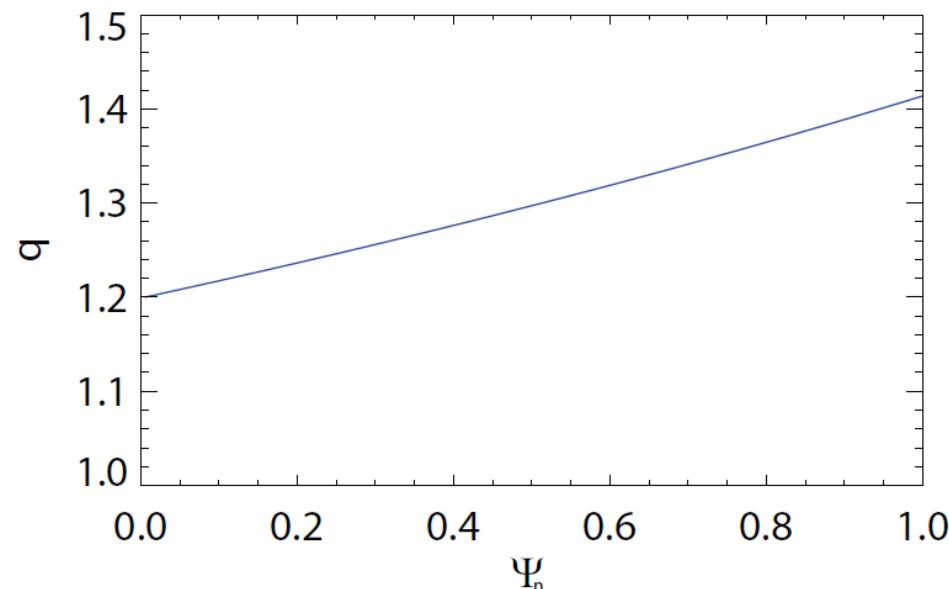


$$\delta W_K \propto \int \left[\frac{\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2} \right) \omega_{*T} + \omega_E}{\langle \omega_D \rangle + l\omega_b + \omega_E} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}$$

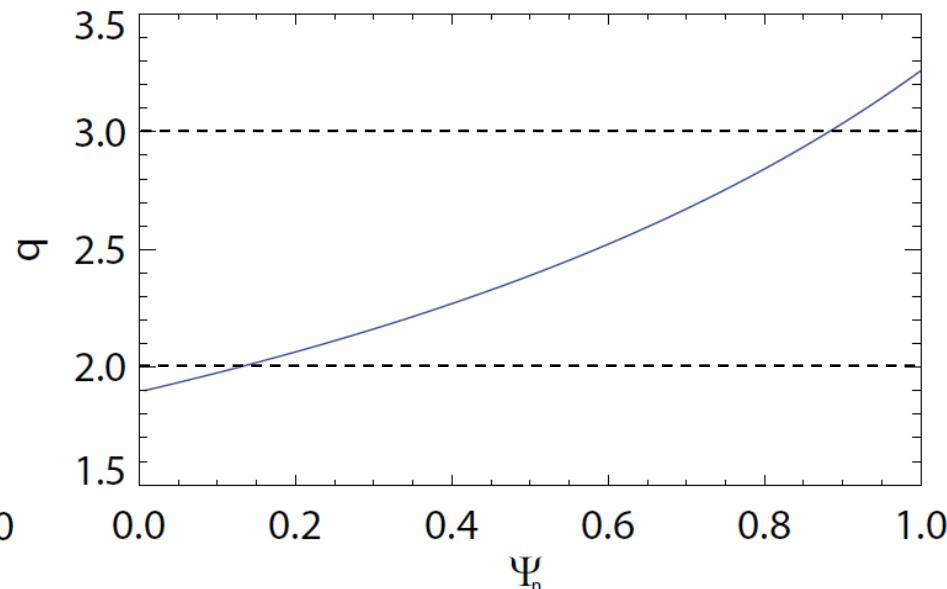
Note: Simplified resonant denominator due to assumptions

Shaped vs. near-circular Solov'ev cases have important q profile differences for benchmarking

Solov'ev case 1 (near-circular)



Solov'ev case 3 (shaped)

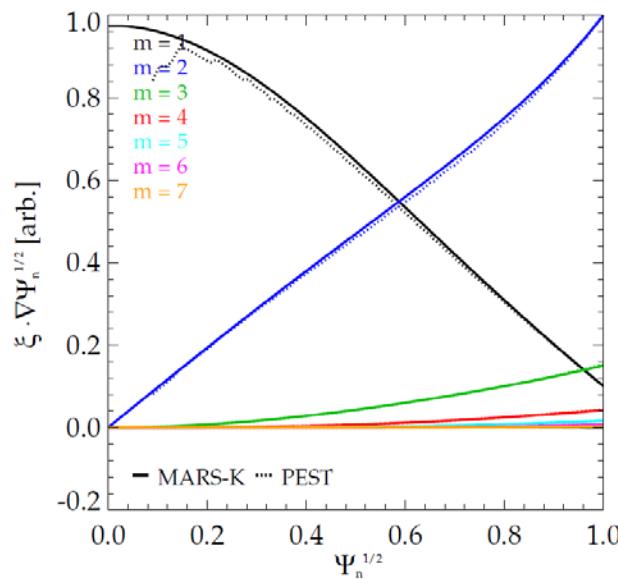


- No $n = 1$ rational surfaces
 - Eliminates potential differences between calculation of kinetic dissipation at rational surfaces
- ITER equilibrium: rev. shear, $q_0 \sim 2.2$, $q_{\min} \sim 1.7$, $q_a \sim 7.1$

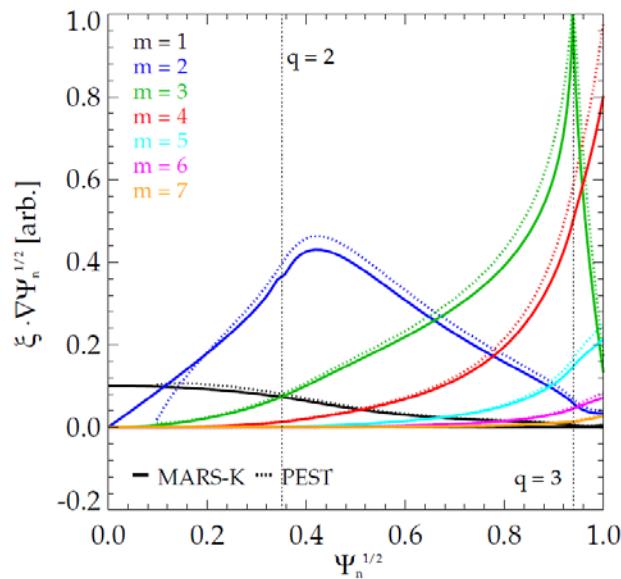
Differences in how MARS, MISK, HAGIS consider mode dissipation at rational surfaces is thought to be key – will be a main focus of next steps

Eigenfunction benchmarking calculations were made to yield similar eigenfunctions, which are verified

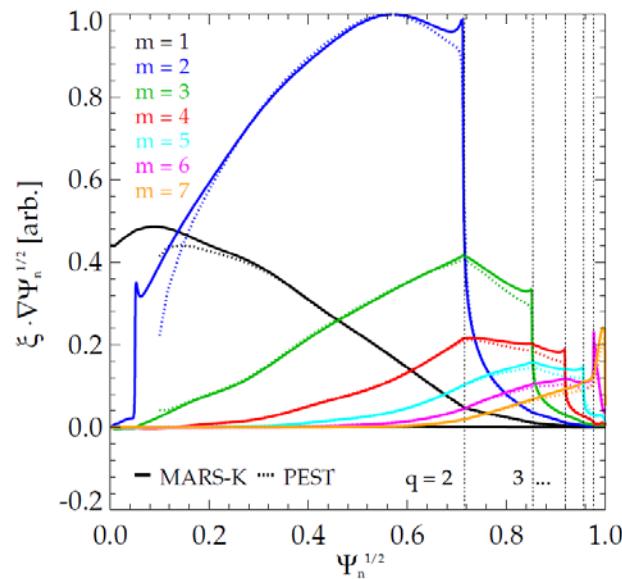
Solov'ev case 1 (near-circular)



Solov'ev case 3 (shaped)



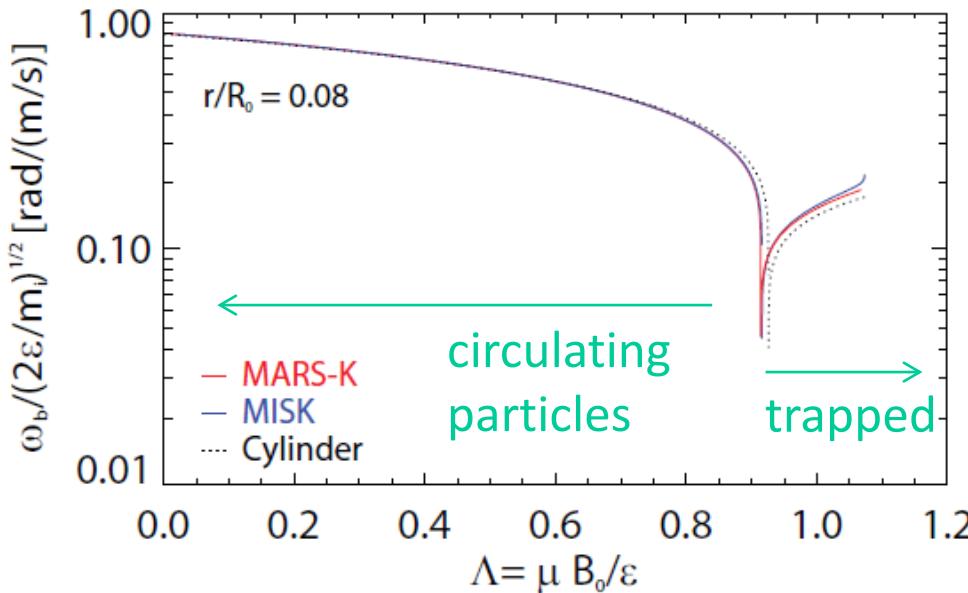
ITER



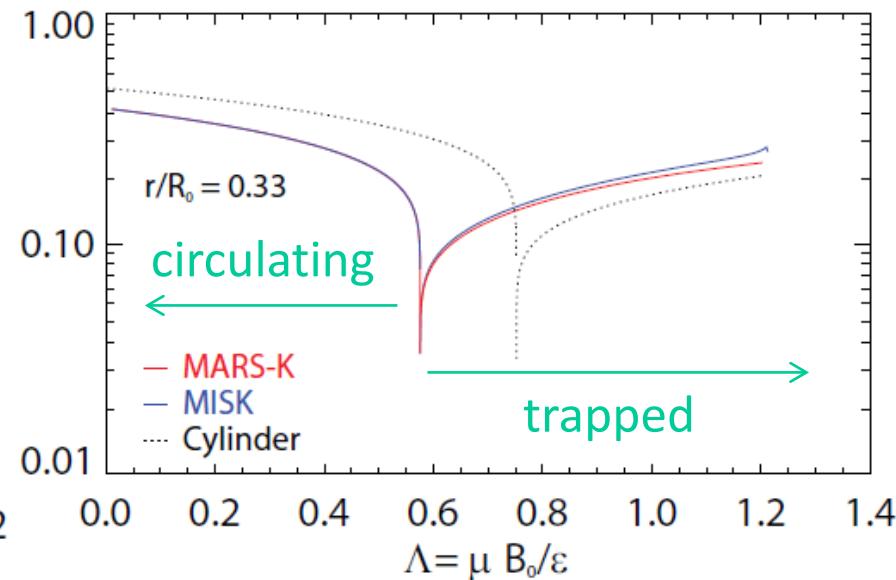
- PEST, MARS-K compared with-wall RWM
 - In PEST we use the wall position that yields marginal stability
 - PEST, MARS-K, and MISHKA compared for no-wall ideal kink
- There are some differences at rational surfaces
 - May lead to stability differences between MISK and MARS calculations

Bounce frequency vs. pitch angle compares well between codes

Solov'ev case 1 (near-circular)



Solov'ev case 3 (shaped)



$$\frac{\omega_b}{\sqrt{2\epsilon/m_i}} = \frac{\sqrt{2\epsilon_r \Lambda B_0}}{4qR_0} \frac{\pi}{K(k)} \quad (\text{trapped})$$

$$k = \left[\frac{1 - \Lambda B_0 + \epsilon_r \Lambda B_0}{2\epsilon_r \Lambda B_0} \right]^{\frac{1}{2}}$$

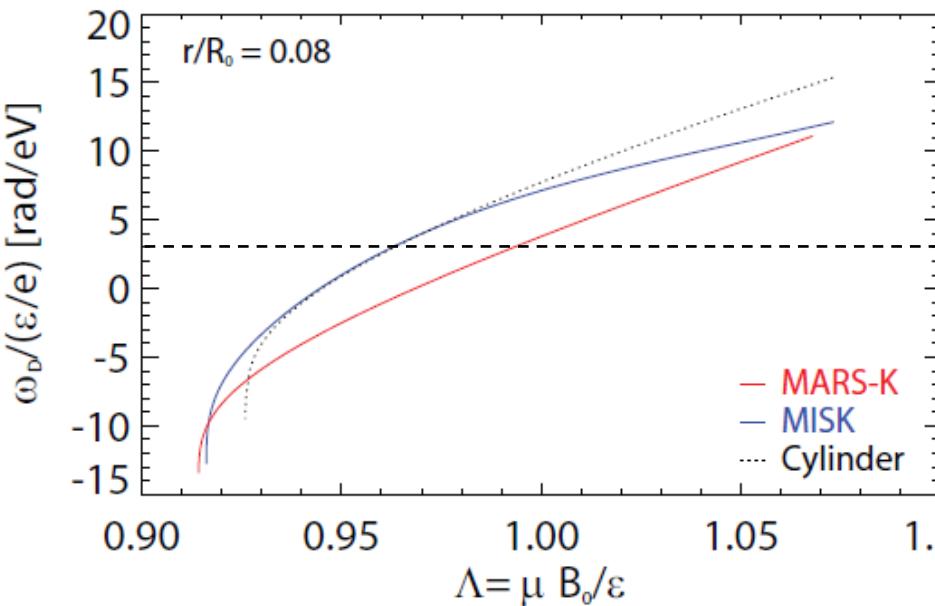
$$\frac{\omega_b}{\sqrt{2\epsilon/m_i}} = \frac{\sqrt{1 - \Lambda B_0 + \epsilon_r \Lambda B_0}}{2qR_0} \frac{\pi}{K(1/k)} \quad (\text{circulating})$$

large aspect ratio approximation

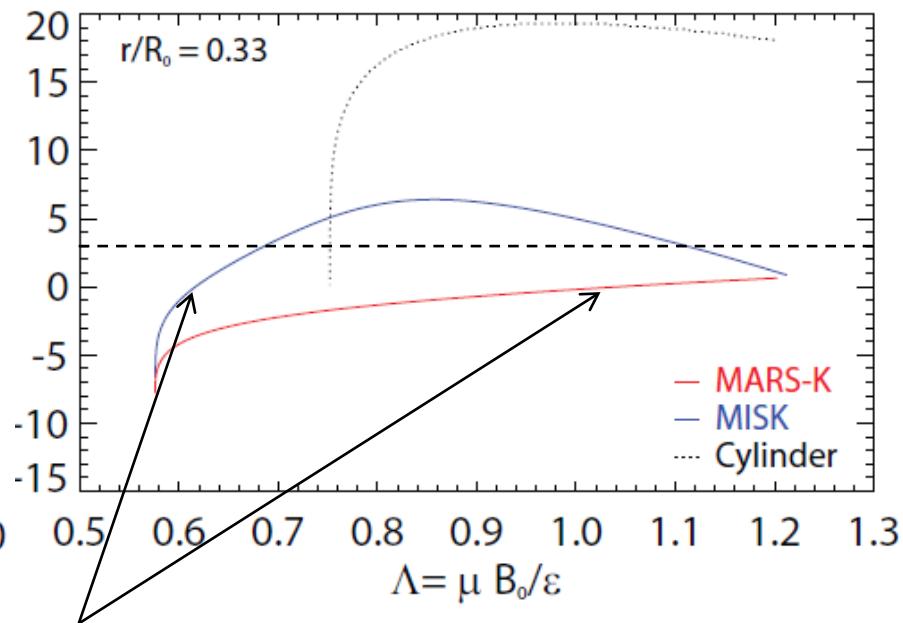
here, ϵ_r is the inverse aspect ratio, s is the magnetic shear, K and E are the complete elliptic integrals of the first and second kind, and $\Lambda = \mu B_0/\epsilon$, where μ is the magnetic moment and ϵ is the kinetic energy.

Significant issue found: precession drift frequencies did not agree

Solov'ev case 1 (near-circular)



Solov'ev case 3 (shaped)



- Clear difference in drift reversal point, even in near-circular case
- Issue found and corrected: metric coefficients for non-orthogonal grid incorrect in PEST interface to MISK

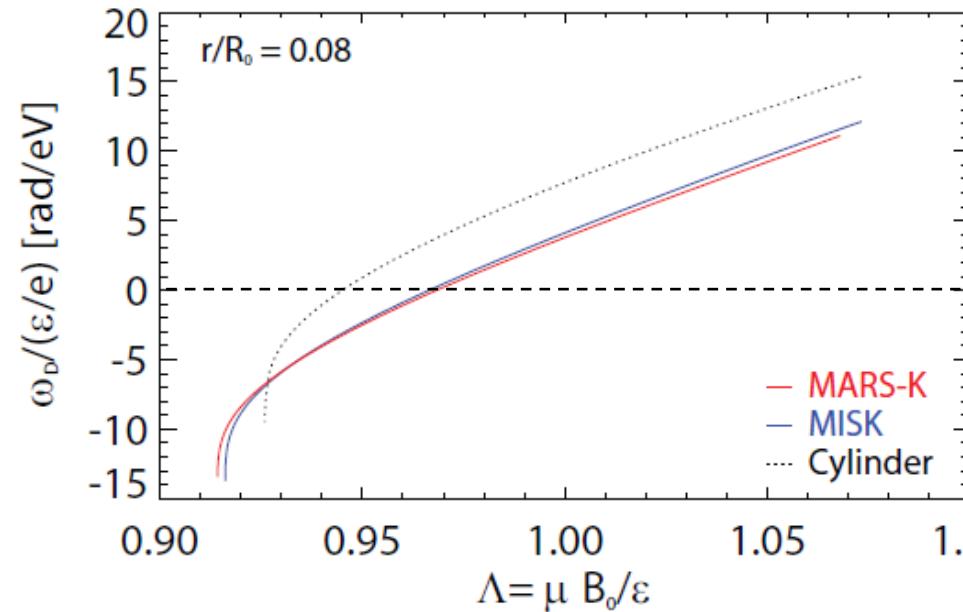
large aspect ratio approximation

$$\frac{\langle \omega_D \rangle}{\varepsilon/e} = \frac{2q\Lambda}{R_0^2 B_0 \epsilon_r} \left[(2s+1) \frac{E(k^2)}{K(k^2)} + 2s(k^2 - 1) - \frac{1}{2} \right] \quad k = \left[\frac{1 - \Lambda + \epsilon_r \Lambda}{2\epsilon_r \Lambda} \right]^{\frac{1}{2}}$$

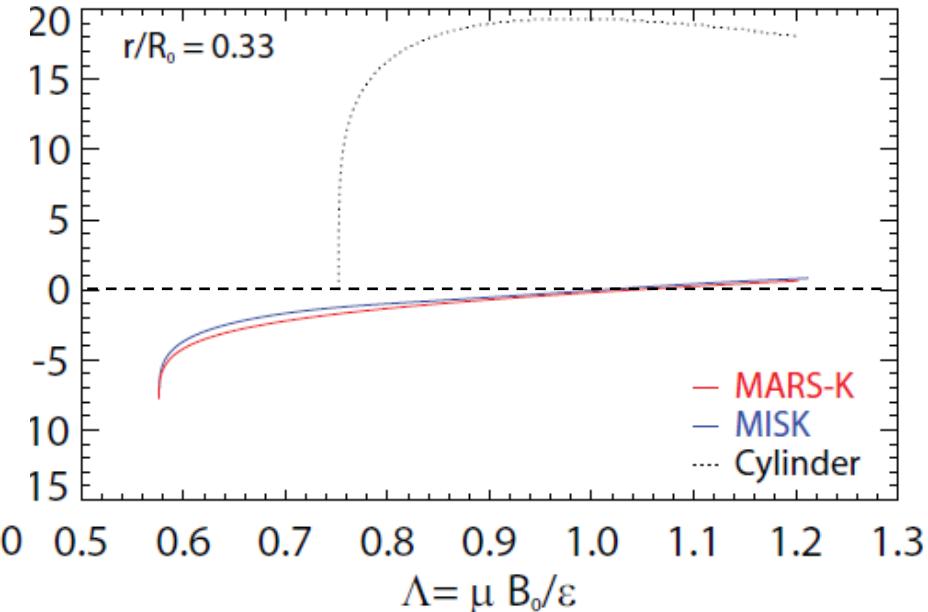
[Jucker et al.,
Phys. Plasmas 15,
112503 (2008)]

Significant issue resolved: The precession drift frequencies now agree

Solov'ev case 1 (near-circular)



Solov'ev case 3 (shaped)



- Metric coefficients corrected in PEST interface to MISK

$$\omega_D = -\frac{1}{\tau} \int \frac{1}{v_{\parallel}} \mathbf{v}_D \cdot (\nabla \phi - \hat{q} \nabla \theta) d\ell - \frac{1}{\tau} \int_{\theta(t)}^{\theta(t')} \hat{q} d\theta.$$

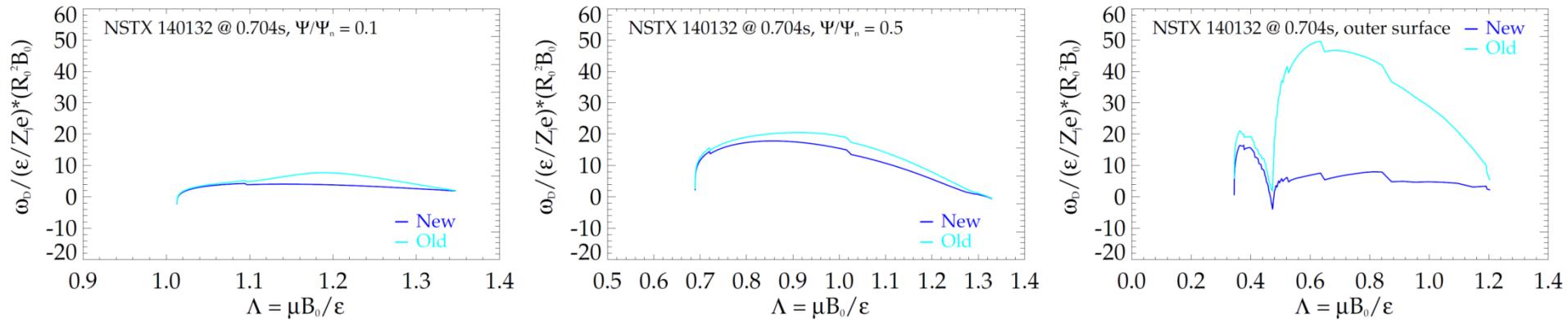
if Ψ and θ are orthogonal:

$$\hat{q} \mathbf{B} \times \nabla \theta = \frac{(\mathbf{B}_{\phi} \cdot \nabla \phi) (\mathbf{B}_{\phi} \times \nabla \theta)}{\mathbf{B}_{\theta} \cdot \nabla \theta}$$

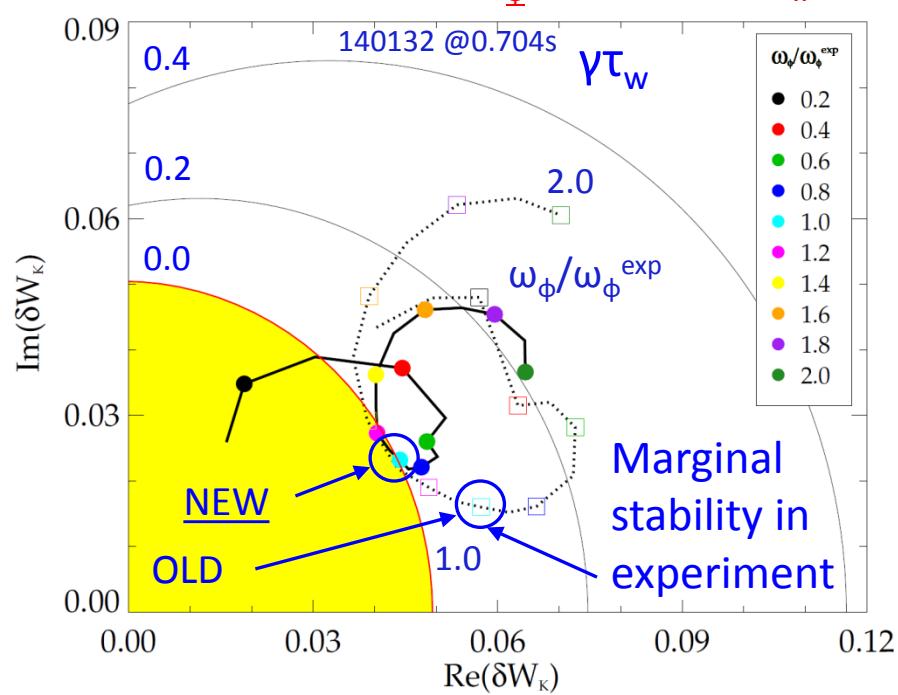
But in PEST, Ψ and θ are non-orthogonal:

$$\hat{q} \mathbf{B} \times \nabla \theta = \frac{\mathbf{B}_{\phi} \cdot \nabla \phi}{(\mathbf{B}_{\phi} \cdot \nabla \theta + \mathbf{B}_{\theta} \cdot \nabla \theta)} (\mathbf{B}_{\phi} \times \nabla \theta + \mathbf{B}_{\theta} \times \nabla \theta)$$

How does ω_D correction effect NSTX results? Mostly affects outer surfaces; characteristic change of $\gamma\tau_w$ with ω_ϕ is the same.



RWM stability vs. ω_ϕ (contours of $\gamma\tau_w$)



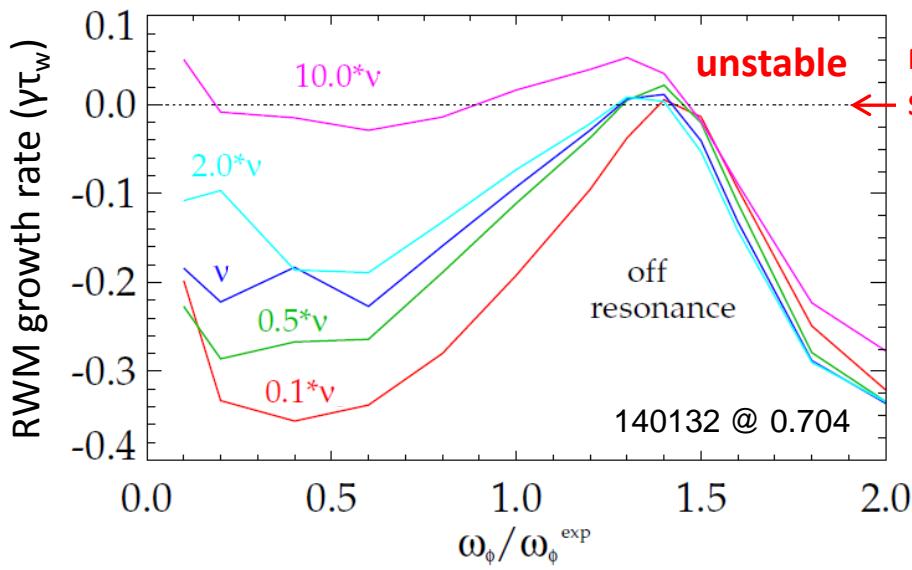
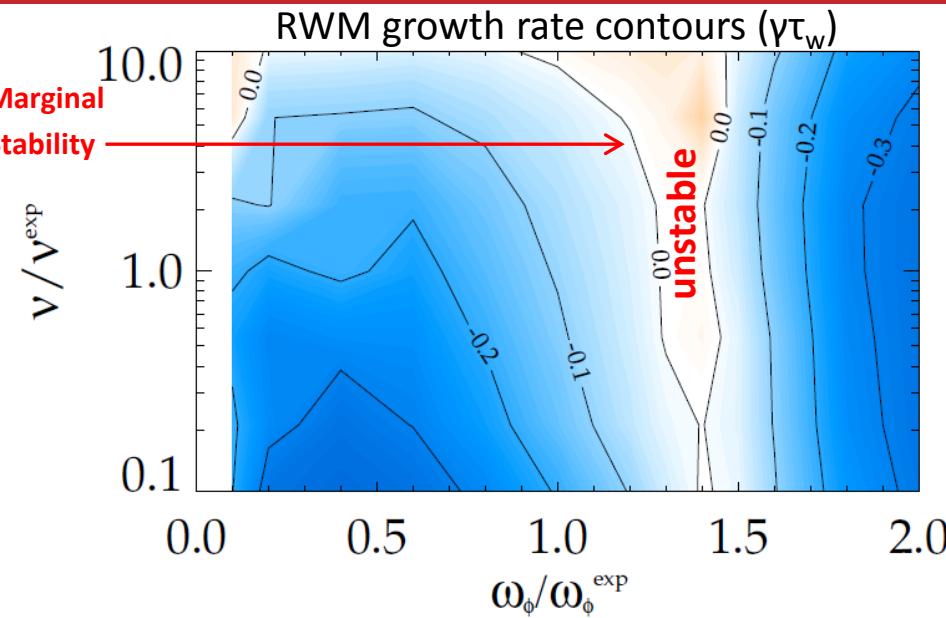
- Affects magnitude of δW_K , but not trends
- In this case, agreement with the experimental marginal point improves
 - Calculations continue to determine the effect of the correction on wider range of cases

Benchmarking process is now at the point of determining agreement in components of stability computations

Work in progress!

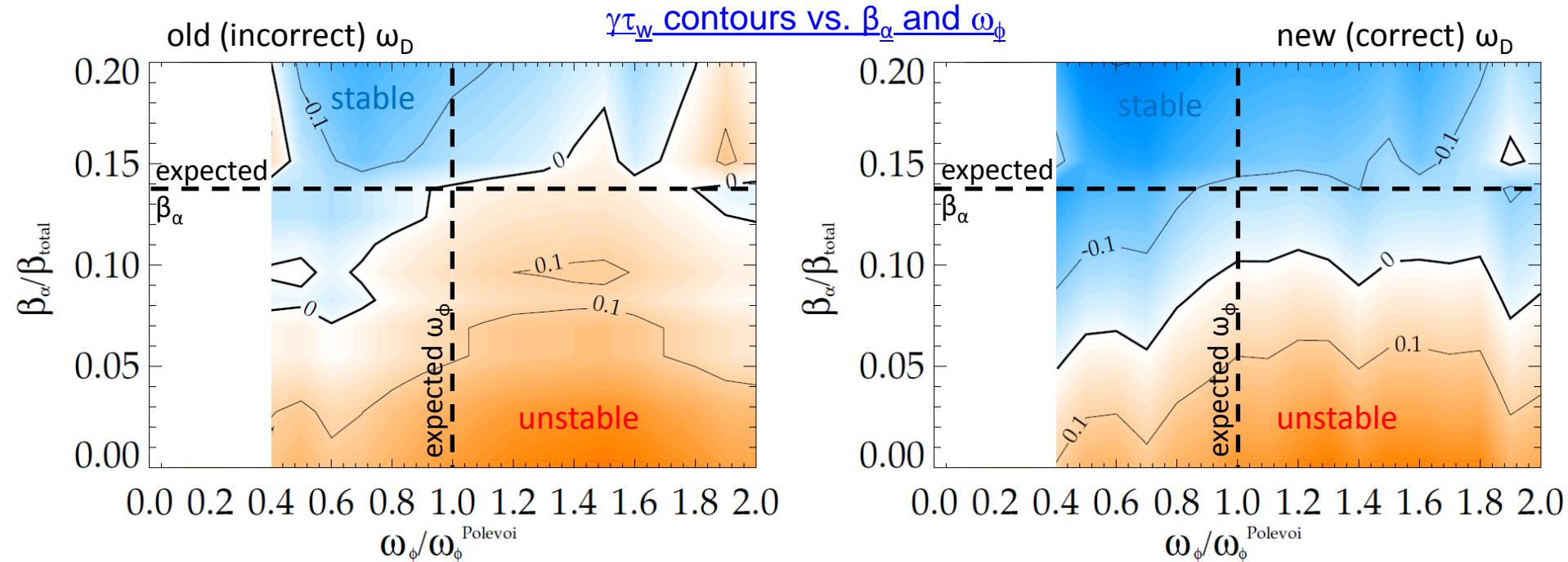
	r_{wall}/a	Ideal δW /(- δW_{∞})	$\text{Re}(\delta W_K)$ /(- δW_{∞})	$\text{Im}(\delta W_K)$ /(- δW_{∞})	$\gamma\tau_{\text{wall}}$	$\omega\tau_{\text{wall}}$
<u>Solov'ev 1</u> (MARS-K) (MISK)	1.15	1.187 1.122	0.0256 0.0243	-0.0121 0.0280	0.804 0.850	-0.0180 -0.0452
<u>Solov'ev 3</u> (MARS-K) (MISK)	1.10	1.830 2.337	0.208 0.371	-0.343 0.060	0.350 0.232	-0.228 -0.027
<u>ITER</u> (MARS-K) (MISK)	1.50	0.682 0.677	141.5 0.665	2.286 -0.548	-0.988 0.071	0.00019 0.437

- Calculations from MISK, and MARS-K (perturbative)
 - Good agreement on ideal δW , Solov'ev 1 $\text{Re}(\delta W_K)$, $\gamma\tau_{\text{wall}}$
 - Less agreement on Solov'ev 3
 - Very different ITER result



- NSTX-tested kinetic RWM stability theory: 2 competing effects at lower v
 - Stabilizing collisional dissipation reduced (expected from early theory)
 - Stabilizing resonant kinetic effects enhanced (contrasts early RWM theory)
- Expectations in NSTX-U, tokamaks at lower v (ITER)
 - Stronger stabilization near ω_ϕ resonances; almost no effect off-resonance
 - Plasma stability gradient with rotation increases
 - important to avoid unfavorable rotation, suppress transient RWM with active control

[J. Berkery *et al.*, Phys. Rev. Lett. **106**, 075004 (2011)]



- ITER requires alpha particles for stabilization across all rotation values.
 - Quantitatively different, but generally consistent with previously analyzed case (in: [J.W. Berkery et al., Phys. Plasmas 17, 082504 (2010)])
- Correction to ω_D makes calculation more stable, but doesn't affect the general conclusions

RWM kinetic stability model is being validated by comparison to experiments and is being benchmarked with other codes

- Benchmarking:
 - Early NSTX calculations found some quantitative differences between marginal point and experiment.
 - Improved results, with additional physics (such as EPs) and code improvements, better match experiments.
 - Benchmarking exercise led to correction of ω_D calculation.
- Physics implications:
 - Energetic particles needed for quantitative agreement with NSTX; EP distribution matters.
 - Stronger stabilization near ω_ϕ resonances in low v devices.
 - Alpha particles required for stability at all ω_ϕ in ITER.

Supported by U.S. Department of Energy Contracts: DE-FG02-99ER54524, DE-AC02-09CH11466, and DE-FG02-93ER54215

XXX

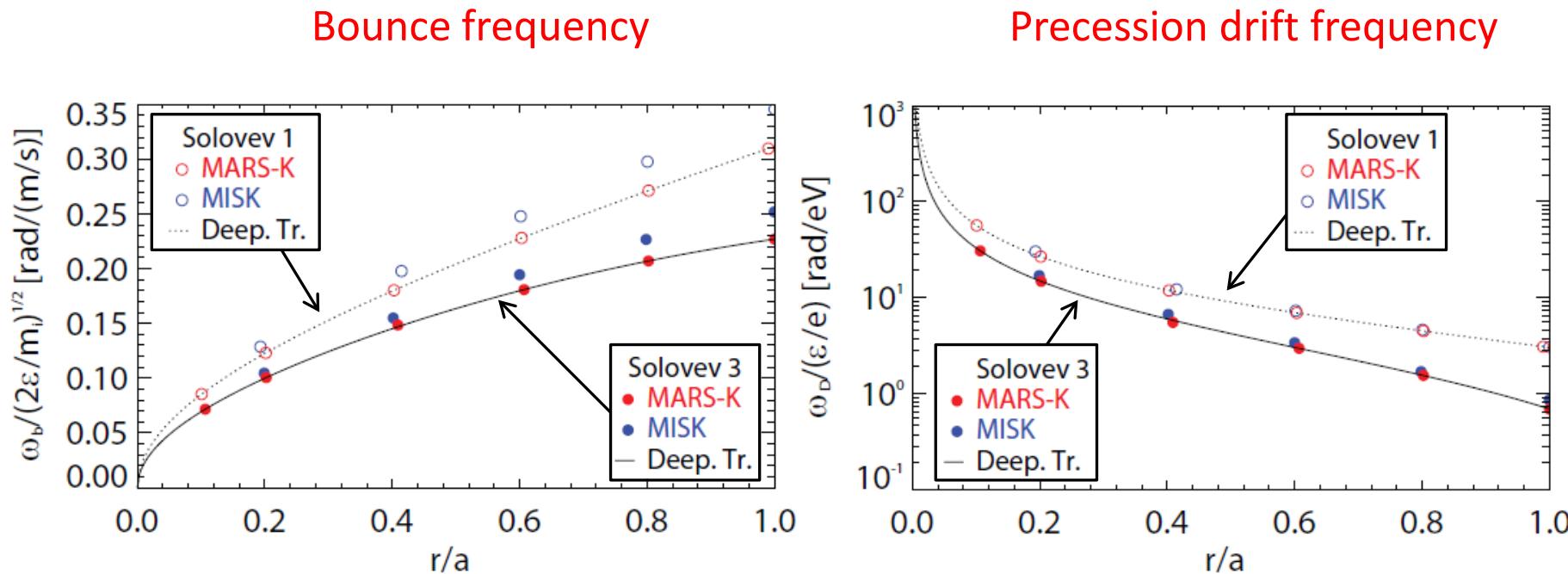
Benchmarking process is now at the point of determining agreement in components of stability computations

Work in progress!

	r_{wall}/a	Ideal δW /(- δW_{∞})	$\text{Re}(\delta W_K)$ /(- δW_{∞})	$\text{Im}(\delta W_K)$ /(- δW_{∞})	$\gamma \tau_{\text{wall}}$
<u>Solov'ev 1</u> (MARS-K) (MISK)	1.15	1.187 1.122	0.0256 0.0243	-0.0121 0.0280	0.804 0.850
<u>Solov'ev 3</u> (MARS-K) (MISK)	1.10	1.830 2.337	0.208 0.371	-0.343 0.060	0.350 0.232

- Calculations from MISK, and MARS-K (perturbative)
 - Good agreement on ideal δW , Solov'ev 1 $\text{Re}(\delta W_K)$, $\gamma \tau_{\text{wall}}$
 - Less agreement on Solov'ev 3
 - Different $\text{Im}(\delta W_K)$ – may have a simple explanation

Bounce and precession drift frequency radial profiles agree (deeply trapped regime shown)



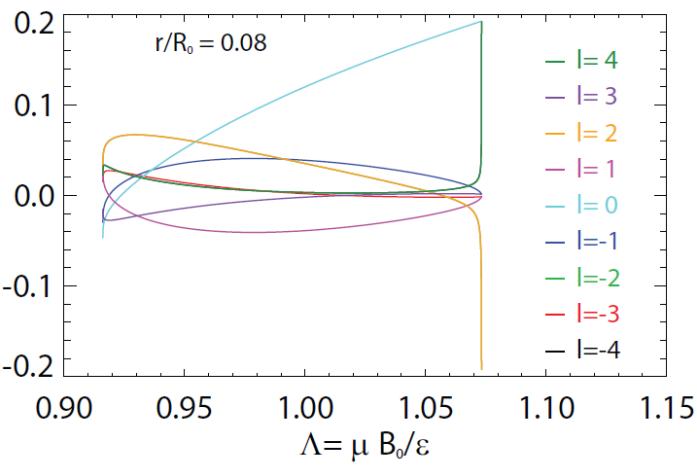
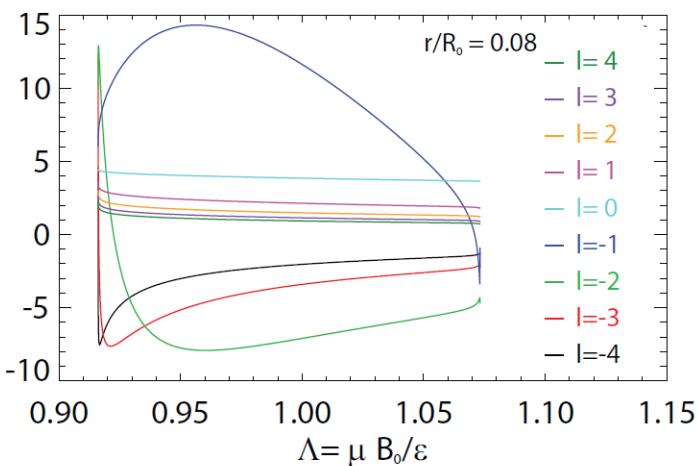
Deeply trapped limit

$$\frac{\omega_b}{\sqrt{2\epsilon/m_i}} = \frac{1}{q_0} \left(\frac{F^2}{1+2\epsilon_r} + \frac{\kappa^2 \epsilon_r^2}{q_0^2} \right)^{-1} \left[\frac{F^2 \epsilon_r}{2(1+2\epsilon_r)} + \frac{\kappa^2 \epsilon_r^3}{q_0^2} + \frac{(1-\kappa^2) \epsilon_r^2}{2q_0^2} (1+2\epsilon_r) \right]^{\frac{1}{2}}$$

- Good agreement across entire radial profile

The kinetic term can be split into two pieces that depend on the eigenfunction or the frequencies, for code comparison

Solov'ev case 1 (near-circular)



$$\delta W_K = -\frac{\sqrt{\pi}}{2} \int_0^{\Psi_a} \frac{nT}{B_0} \int_{B_0/B_{\max}}^{B_0/B_{\min}} \tau \sum_l \langle H/\hat{\varepsilon} \rangle^2 I_{\hat{\varepsilon}} d\Lambda d\Psi.$$

Perturbed Lagrangian

$$\langle H/\hat{\varepsilon} \rangle (\Psi, \Lambda, l) = \frac{1}{\tau} \oint \frac{1}{\sqrt{1 - \frac{\Lambda B}{B_0}}} \left[\left(2 - 3 \frac{\Lambda B}{B_0} \right) (\boldsymbol{\kappa} \cdot \boldsymbol{\xi}_{\perp}) - \left(\frac{\Lambda B}{B_0} \right) (\nabla \cdot \boldsymbol{\xi}_{\perp}) \right] e^{-il\omega_b t} d\ell.$$

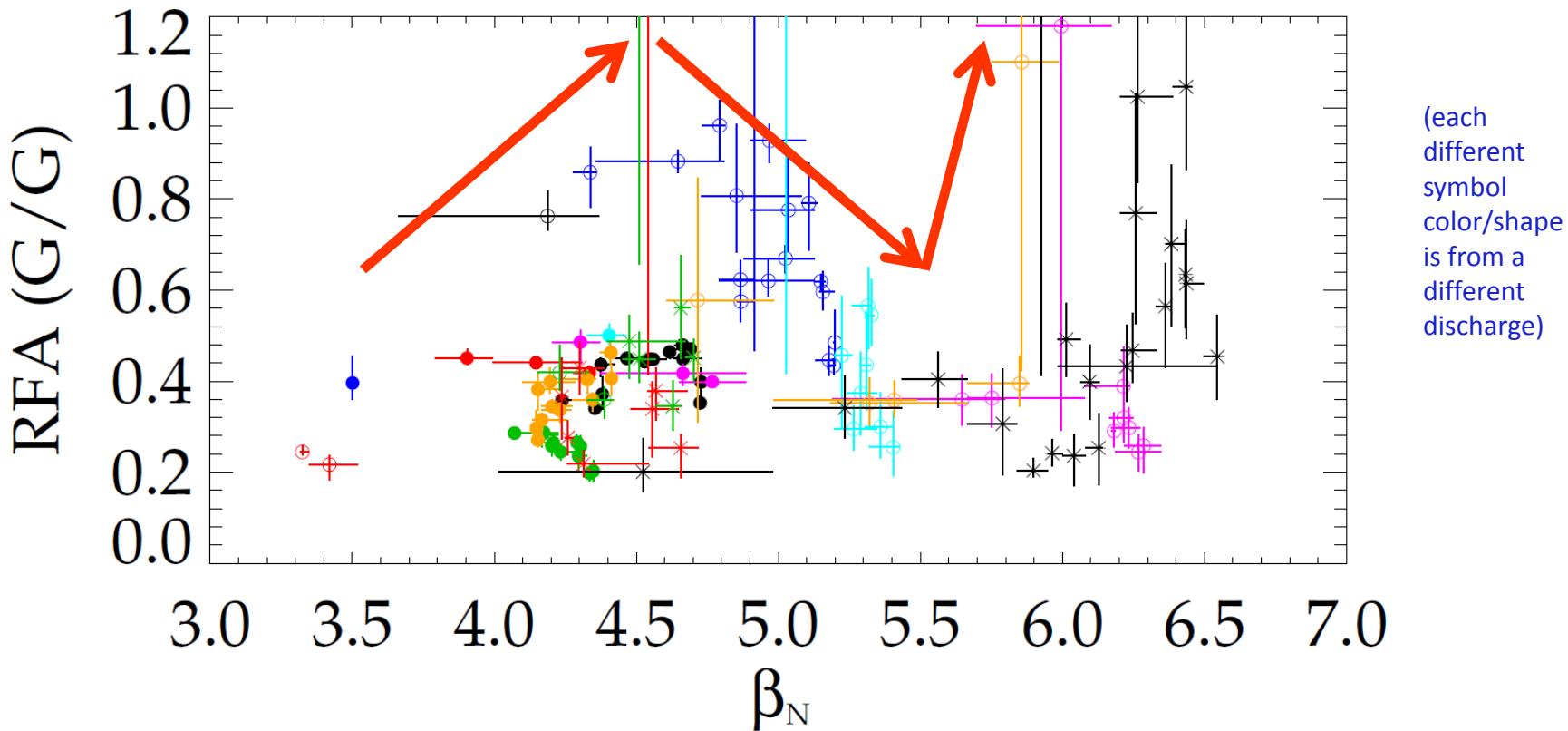
- Depends mostly on the eigenfunction.

Energy integral of the frequency resonance fraction

$$I_{\hat{\varepsilon}} (\Psi, \Lambda, l) = \int_0^{\infty} \frac{\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2} \right) \omega_{*T} + \omega_E - \omega_r - i\gamma}{\omega_D + l\omega_b + \omega_E - i\nu_{\text{eff}} - \omega_r - i\gamma} \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}.$$

- Does not depend on eigenfunction, just frequency profiles

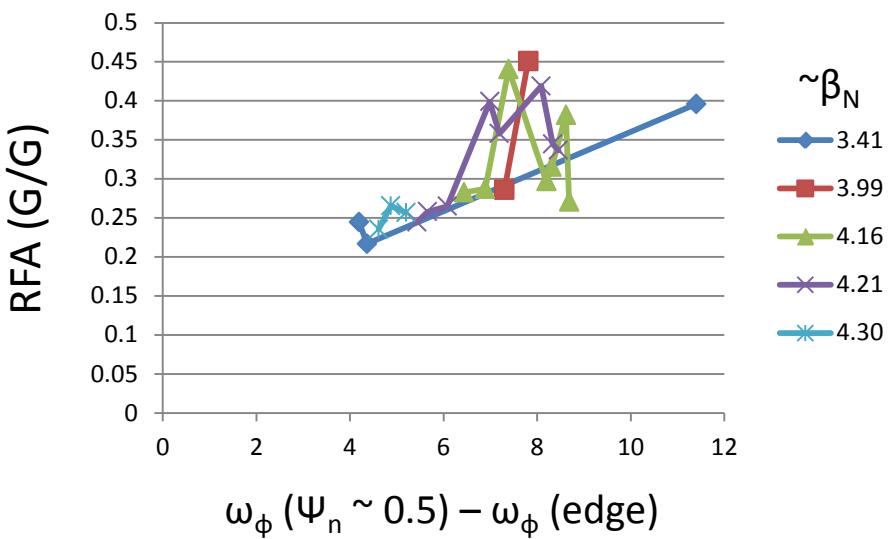
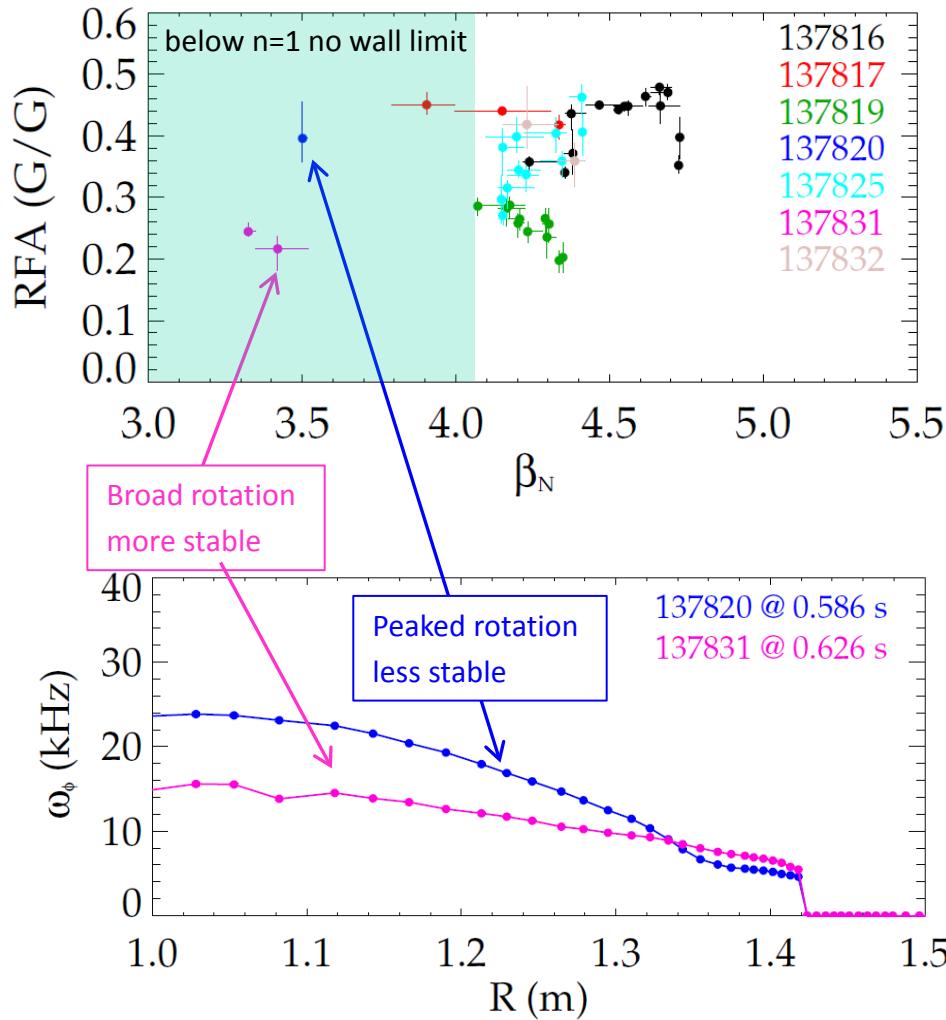
Latest NSTX experiments: Maximum RFA amplitude does not monotonically increase with increasing β_N



- Examine resonant field amplification (RFA) amplitude to determine proximity to the marginal point
 - shows increased stability at intermediate β_N ($\sim 5.2 - 5.8$).
- In other machines (DIII-D, JET) RFA increases with β_N

RFA response is greater with more peaked ω_ϕ , at lower β_N

- RFA response observed below $n = 1$ no-wall β limit
 - Common in tokamaks
- RFA increases with rotation gradient at \sim constant β_N .



Above the no-wall limit, RWM stability dependence on ω_ϕ profiles is complex

- More specifically, RWM stability / RFA depends on energy dissipation due to kinetic resonances
 - Depends on ω_ϕ profile.
 - Sensitivity to rotation in the outer surfaces where the RWM ξ is large
- Alteration of amplitude and time history of applied $n = 3$ field creates ω_ϕ profile variation
- Further characterization of the approach to RWM marginal stability is underway

