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NSTX is Addressing Global Stability Needs for Maintaining

Low I;, High Beta Plasmas for Fusion Applications

2 Motivation

a Maintain high 3 stability, validate
predictive and control capability to allow

Fusion Nuclear Wi

confident extrapolation to ST fusion SeeRem ™ ST Pilot

Plant

applications and ITER

0 Outline TER

d Resistive wall mode stabilization at low internal
iInductance, |,

2 RWM active control advances to improve stabilization
2 Model-based RWM state space controller (RWMSC)
2 Multi-mode RWM / DEFC spectrum for RWMSC use
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NSTX is a spherical torus equipped to study passive and
active global MHD control

0 High beta, low aspect ratio 3D Structure Model
O R=0.86m,A>1.27 RWM poloidal
a I,<15MA B, =55kG Stabilizer sensors (B))
Q B, <40%, By > 7 plates

0 Copper stabilizer plates for kink
mode stabilization

I 7 7]

/

0 Midplane control coils ]

O n=1- 3field correction,
magnetic braking of o, by NTV

o n=1RWM control —

I L L O O

N A Y I

N N N I I

[ ]

0 Combined sensor sets now used _
for RWM feedback RWM radial sensors (B,)
0 48 upper/lower By, B, RWM active stabilization coils
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Improvements in stability control techniques significantly
reduce unstable RWMs at low |, and high B,

o B/l 14 1312 11 10 N |
: Control: active O passive® || Initial experiments
o L - O 48% disruption
- ST Pilot Plant IO 7 490 probability by RWM
6| - ~ j

- ST Component

By | Test Facility — | ® 0 Experiments with

control enhancements

4__ -~ ¢ , 0 Significantly reduced
P _/If 6.7 | disruption probability
- SHRE A ¢ e with control
2} . SR R enhancements
Unstable RWM ® 14% of cases with
@® Stable / controlled RWM §§ B/l > 11
U l ak S h o ,-,,,,,,,42—!,,,';:!,@-:,;,,', T - S-OVVNG TN '
0.0 0.2 0.4 0.6 0.8

|
Plasma internal inductance (Ii):

0 Integral measure of the peakedness of the current profile
O Low [, typical of non-inductive operation, and at high « (for vertical stability)
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Improvements in stability control techniques significantly
reduce unstable RWMs at low |, and high B,

high B/l shown —
many more shots
than this

q B/l 14 1312 11 10
- RWM State Space
Controller Utilized .
6 [ (NOTE: only two g

O Computed n =1 no-wall limit B/I,,~ 6.7 (low |, range 0.4 — 0.6)

0.8

Q Initial experiments

0 48% disruption
probability by RWM

0 Experiments with
control enhancements

o Significantly reduced
disruption probability
with control
enhancements

® 14% of cases with
Byl > 11

® Much higher
probability of
unstable RWMs at
lower By, why??

O Synthetic equilibria variation: n = 1 no-wall unstable at all B,

at I, £ 0.38 (current-driven kink limit)
O significant for NSTX-U, next-step ST operation

@ NSTX
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Improvements in stability control techniques significantly
reduce unstable RWMs at low |, and high B,

q B/l 14 1312 11 10
I Examine RWM b Soa |
6l stability
here

0.8

Q Initial experiments

0 48% disruption
probability by RWM

0 Experiments with
control enhancements

o Significantly reduced
disruption probability
with control
enhancements

® 149% of cases with
Byl > 11

® Much higher
probability of
unstable RWMs at

O Computed n =1 no-wall limit B/I,,~ 6.7 (low |, range 0.4 — 0.6) lower By, Why??
O Synthetic equilibria variation: n = 1 no-wall unstable at all B,

at I, £ 0.38 (current-driven kink limit)

O significant for NSTX-U, next-step ST operation
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Kinetic stability calculations show reduced stability in low |,
target plasma as w, Is reduced, RWM becomes unstable

0 Stability evolves

MISK code RWM stabllltv vS. o (contours of 1T, »)

0 Computation shows stability at
time of minimum |,

0 Region of reduced stability vs.
w, found when RWM becomes
unstable (I, = 0.49)

0 Quantitative agreement
between theory/experiment

0 MISK, MARS-K, HAGIS code
benchmarking (ITPA MDC-2)

O MISK wy calc. improved

® (already good) agreement
between theory/experiment
improved (no free params.)

® Best agreement with fast

particle effects included
(Key for NSTX/DIII-D unified result (IAEA 2010)

@M NSTX

0.06

140132 t= O 704S ® Jm;xp

® 02 ||
® 04
® 06 ||

w/fast partlcles

thermal ® 08

0.04 1.0 H
2 N A 12

= ¥ s |1

\g’ e 18 |.
= : ® 20

0021 @y@, &P ]
marginal

stability

unstable . \ 0

000l . . . |(experiment)

0.00 0.02 0.04 0.06 0.08
Re(8W,)

(more gquantitative comparison to theory)

- S.A. Sabbagh, et al., IAEA FEC 2008, Paper EX/5-1

- J.W. Berkery, et al., PRL 104 (2010) 035003

- S.A. Sabbagh, et al., NF 50 (2010) 025020

- J.W. Berkery, et al., Phys. Plasmas 17, 082504 (2010)
- S.A. Sabbagh, et al., IAEA FEC 2010, Paper EXS/5-5
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Combined RWM B, + B, sensor feedback gain and phase
scans produce S|gn|f|cantly reduced n =1 field

140124
14012

-
w
©
a
-
@

‘ B Galn

156

1.0
t

()

B, FB phase = 180°

1.0 1

0.4 \ 0.6 \ 0.8 . 2
t

B, FB phase =0° B, FB phase = 90°

!—‘|.|.|m el

()

4

Favorable B, + B, feedback (FB)
settings found (Iow | plasmas)

0 Fast RWM growth ~ 2 - 3 ms
control by B,

o B, FB controls (~10 ms ~ t,_agia)
n=1 field amplification, modes

Time-evolved theory simulation of
B,+B, feedback follows experiment

Simulation of B + B control (VALEN)

2.8 —
0 deg FB phase
~ 2.7 |
O
‘_| L
I 26 |
- [
% I 90 deg FB phase
= 25 T 2
© I Vacuum error field -
2 f + RFA f
§ 2.4 180 deg FB phase\
2_37“‘\“‘\“‘\“‘\“‘\“‘
0 0.02 0.04 0.06 0.08 0.1 0.12

At (s) (model)

@ NSTX
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RWM feedback using upper/lower B, and B, sensors modeled
and compared to experiment

Modeled B, field at sensors and midplane o RWM quWth VS. B feedback phase
06:: Bsensorsalone |
_ | 250degrees L | 124 ]N /4.
0.4 . 1 } —
- I 4 - L 100 [ ]
—~ | ~ S
k) I ] < !
2 / ! >< / \ 1 = [
T Y :\ A\ | s ‘
kS i : \ / \\ : ] S sl
r 02N : A / ] O g
Z \-\L//Q ’\,,_«/ ] o [ \Br and B,
0.4 If 3 \ - If gain 2e5 Sensors
:bottom| 5enso|rs\v/I top sensors | O =603 180 240 300 360
DCON, VALEN
0 60 120 180 240 300 360 COdeS Br feedback phase (deg)

Toroidal angle (deg) 100

0 Both B, B, feedback contribute to active control | gain 2e5 'RWM growth vs. B,
0 B, mode structure and optimal feedback phase ~ #p 1 Ieedbackagain
agrees with parameters used in experiment a | !
. - . O B | . .
0 B, feedback alone provides stabilization for growth © ‘ ! optimal gain
times down to ~ 10 ms ~ 1,4 With optimal gain g b ! |_>/|
e 1
0 Theory shows optimal feedback phase used in \o 20 |
experiments; gain used is near optimal !

- - 0 - = .
MISK results, sensor measurements: use marginal ideal mode 0 210 410° 610° 810° 110°
eigenfunction in RWM state space controller B, gain (arb)
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Model-based RWM state space controller in NSTX
advances present P!l controller

a PID (our present, successful workhorse)
0 Feedback logic operates to reduce n = 1 amplitude (n = 1 phase/ampl. input)
0 No a priori knowledge of mode physics, controller stability
0 Only knowledge of mode structure: spatial phase offset of upper/lower sensors

0 State space control

0 States reproduce characteristics of full 3-D model: conducting structure,
plasma response, mode shape, feedback control currents via matrix operations

® Boozer permeability model used for plasma response
® A key quantity to compare to measurements is mode pitch at large R
0 Observer (computes sensor estimates)
® RWM sensor estimates provided by established methods (Kalman filter)
® useful as an analysis tool to compare plant output to measurements
0 Controller (computes control currents)
® Controller gain computed by established methods: gains for each coil and state

O Many shots taken in NSTX with RWM state space control

O Two dedicated run days, near-record /I, in sustained plasmas, gain/phase
scans, hundreds of shots run with low gain (e.g. observer scoping studies)
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New State Derivative Feedback Algorithm needed for Current

Control
0 State equations to advance Control vector, u; controller gain, K,
X=AX+BU 0=-K_X= |°CC Observer est., y; observer gain, K,
= Ao — K., K, computed by standard methods
y= CX+ Du (e.g. Kalman filter used for observer)

QO Previously published approach found to be formally “uncontrollable” when
applied to current control

O State derivative feedback control approach

N

Y= AX+Bl  G=-Rx —» I, =—R X

C

S _ 7 \-1 A\ e.g. T.H.S. Abdelaziz, M. Valasek., Proc. of 16th IFAC World
X = ((I + BKC) A)X Congress, 2005

O new Ricatti equations to solve to derive control matrices — still “standard”
solutions for this in control theory literature

Advance discrete state vector B ks 1 PO ey
- General (portable) matrix
AXt 4t BUt Y yt CX (time update) output file for operator
- Y 1 _ ~ | (measurement - PCS co_de recently |
Xp,g =X + A Ko (ysensors(t) — ) update) generalized by K. Erickson
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Model-based RWM state space controller including 3D
model of plasma and wall currents used at high B,

Full 3-D model ~3000+
— states

Balancing
transformation

0  Controller model can
compensate for wall currents
O Includes plasma mode-induced
current
Potential to allow more flexible
control coil positioning

O May allow control coils to be
moved further from plasma,

and be shielded (e.g. for ITER)
Katsuro-Hopkins, et al., NF 47 (2007) 1157

Straightforward inclusion of
multiple modes (withn =1, orn
> 1) in feedback

State reduction (< 20 states)

N
o
o

RWM
eigenfunction ;ﬂé'
(2 phases, [
2 states)
(X, %) %, %,
Controller reproduction of n = 1 field in NSTX
150 ¢ . :
100 | ' 1 | 5 states
50 | ! ﬁ used
0F | LT
E 1 Controller
-50 | 1
: \ (observer)

Sensor Difference (G) Sensor Difference (G)

189 i~ Measurement
100 | '
50
ol 10 states
g used
-50 |
-100 F
1co | 118298 _ (only wall
02 04 06,08 10 states used)

@ NSTX
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Open-loop comparisons between sensor measurements and
state space controller show importance of states and model

A) Effect of Number of States Used B) Effect of 3D Model Used
m Measurement No NBI Port
2007 - ‘ ; ' '
5 - 5By 5WI\/I / Controller (observer) 80
8 0> ] 0:
GCJ _100jg'137722 | | ; i 4ol 137722 | :
CT) 0.56 0.58 0.60 0.62 \ 0.56 0.58 0.60 0.62
= t (s) f- t (s)
a) HTH
5 7 States e - With NBI Port
C 200 - | limemeni . ‘
3 5B, lryy SRANLSS %) 580
100¢ Nimy -
= : Nt 40F
= oF g
e : OF
100187722, | ; 137722 |
0.56 0.58 0.60 0.62 0.56 0.58 0.60 0.62
t(s) t(s)

O Improved agreement with sufficient 0 3D detail of model important to
number of states (wall detail) Improve agreement
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RWM state space controller sustains otherwise disrupted
plasma caused by DC n =1 applied field

RWM state space feedback (12 states)

- v\ErControI
Control not applied / Eapplie;\
3 ‘
0
10 :
AN T td :
,\ J fd
0 o A l\( v\‘/‘\ gt W{ M\ WYY ” ' ” ) hl
0.5 5 . v
lrwim-a (KA) |
0.0 ' o
1; 03¢/27T~q:2 : 140025
4 (kHZ) | | 140026
O 1 1 1 1
0.0 0.2 0.4 0.6 0.8

1.0

O n=1DC applied field
test
0 Generate resonant
field amplication,
disruption
O Use of RWM state

space controller
sustains discharge

a0 RWM state space
controller sustains
discharge at high B
0 Best feedback
phase produced

long pulse, By =
6.4, B/l = 13

@ NSTX
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NSTX RWM state space controller sustains high By, low [,
plasma

RWM state space feedback (12 states)

1.0/ 1) (MA i i i
0 5; (MA). : : A" Favorable FB/v
T Unfavorable feedback phase phase

ol Bn
2 _ ; 5 5 0 Feedback phase
SBnl(G) Scag t feedback
re | estl reedpacC
g. ot W “,'{”H”Omfh* .r phase
400 | produced long
200 RWM-4 (/\) | 5 "“‘&‘ F)LJ'SSEE, ﬁSPJ =
13 : 6.4, Byl = 13
¢ : : i

140037
140035

80 02 04 06 508 10 12 14
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Multi-mode computation for RWM & DEFC: 2"d eigenmode component has
dominant amplitude at high B, in NSTX 3D stabilizing structure

oB" from wall, multi-mode response

dB" RWM multi-mode composition

=6.1
1.0 Y P— B —
i S 133775
| L t=0.655s ]
- ; “N, mode 1]
0.8 - ,é\l.oz" ; ]
CHE N
) i 0.0F
Q L 2 -
S 06 1 g 0 NSTX RWM not stabilized by o,
% I 1.0E 3 () ; 0 Computed growth time consistent with
= I - “P%T mode 3] experiment
c 0.4 ¢ 9 o tecizmode 2, 0 2"eigenmode (“divertor”) has larger
0 I 00 10 20 amplitude than ballooning eigenmode
o - (m) ‘e “_n
0o | Unstable O NSTX RWM stgblllzed by w, .(or o
“mode - _ / 0 Ballooning eigenmode amplitude
1 Stabilized by rotation decreases relative to “divertor” mode
2 0 Computed RWM rotation ~ 41 Hz,
0.0 close to experimental value ~ 30 Hz
0 5 10 15

0 ITER scenario IV multi-mode spectrum

ideal eigenmode number 0 Significant spectrum forn =1 and 2

mmVALEN code
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Multi-mode RWM spectrum in NSTX @ Bn=5.54 has significant 2nd
eigenfunction contribution, B perturbation not greatly changed at large R

? —iewsemern| | NSTX shot#133775 DCON mode weighted

’ — ] _ sums shown below
% 08| | t=0.495]s] .
S I ] lllustration of B_normal
T 06! | signature for RWM mode
[5) L ]
@ normal distance from
g o4 plasma surface
E R \ i corresponds to B_normal
S 02/ ! ’

| ] y=03.17 [1/% \ v =101.18 [1/s]

— ] _ B, = 5.54

% "5 10 15 20 2 zﬁN554 -
L | |eem=s [ I I [ === Z 495
DCON mode# NSTXB133775.495.2610 n érﬁf@o 7 [ \%vflsgfm z3modes ] [ wtsum Z 3 modes
15} Bnia807|  1.5¢ = " 15 =
. L [ %’!{:E ] [ o
lllustration of DCON .. ] b T ] 1l
modes equal weights ¢ ; : § “\\\ 5 : 5 "‘*g\\
#1 thru #3, \0.5 < \ o5 § o 08 S \0
each DCON mode shown 0 ¢ 1\ 0/ ¢ o o d A
with max B_n = 0.5[m] = % ] [ § .;j ] i § :}
- 0.5 ¢ 0.5 Jo | -05-S o

L g il L& // ] : i //

- K aEe Ly 10 Z Py / ] R i /
normal distance from ; 227 : AV
plasma surface (black e : \ 45 2T | 15
dashed line) corresponds -9\ 7 N/ ? :
to B_normal 20" BE T \2 2008 1T 15 2 0 05 1 15 2

mmVALEN code RWM B and B, sensor locations
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ITER Advanced Scenario IV: multi-mode RWM spectra computation
shows significant ideal eigenfunction amplitude for several components

0.6

0.4

0.2

oB" amplitude (arb)

0.0

\ Multi-mode spectrum

By = 2.65 |

n=1

il

V

B

—

0O 3 6
ideal eigenmode number

9 12

15

0.6

0.4

0.2

0.0

.’

mode 2 -
mode 3 |

8 10 R(m)

Multi-mode
M 7

By=3.92

n=1

e e

9 12 15

ideal eigenmode number

BNno—waII =25
4 mmVALEN
4 10 R(m)
1.0 : : :
Multi-mode
0.8 spectrum
06 BN = 392 |
n=2
0.4 \4
0.2
\
6 9 12 15

ideal eigenmode number

@ NSTX

16t MHD MCM: RWM Stabilization State Space Control, Multi-component Sensors in NSTX (S.A. Sabbagh, et al.) Nov 21st, 2011 18



NSTX is Addressing Global Stability Needs Furthering Steady
Operation of High Performance ST/ Tokamak Plasmas

a Significant reduction in disruption probability in high B,
plasmas with reduced |,

0 Quantitative agreement between RWM marginal stability and
Kinetic stabilization theory for low [, high B, plasmas

0 Use of combined B, + B, RWM sensor n=1 feedback
Improves reduction of n = 1 field amplitude, improved stability

a0 RWM state space controller sustains low I, high B, plasma

0 Potential for greater flexibility of RWM control coil placement and
shielding in future burning plasma devices (e.g. FNSF, ITER)

0 Multi-mode spectrum computed for NSTX and ITER scenario 1V for
direct use in state space controller (RWM control & DEFC)

NSTX 16t MHD MCM: RWM Stabilization State Space Control, Multi-component Sensors in NSTX (S.A. Sabbagh, et al.) Nov 21st, 2011 19
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Reduced collisionality (v) is stabilizing for resistive wall

modes, but only near kinetic resonances

0.0

0 NSTX-tested kinetic RWM stability theory: 2 competing effects at lower v

0.5 1.0 1.5 2.0

®,/ ®,"" Plasma rotation

0.0

0.5

1.0

~ 0.1F ' Itlbll ] vrare I10.05 S } /
o - unstable | Margina - s =
\q—? 0.0F & Stability / F >\ o5 T
§ 01: _ g b I I-C%\/

. O — 04(7)
£ I E1.0F 2c|
9 -0.2 >-% C | \3
(@)] C % ig
% -0.3F \ O | \\
@ 04l 140132 @ 0.704 0.1 e

1.5

0 Stabilizing collisional dissipation reduced (expected from early theory)

0 Stabilizing resonant kinetic effects enhanced (contrasts early RWM theory)

0 Expectations in NSTX-U, tokamaks at lower v (e.g. ITER)
0 Stronger stabilization near o, resonances; almost no effect off-resonance

0 Plasma stability gradient vs. rotation increases
important to avoid unfavorable rotation, suppress transient RWM with active control

24

®,/®,” Plasma rotation

J.W. Berkery et al., PRL 106, 075004 (2011)
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Second NBI beam port in NSTX-U makes a small difference in
with-wall limit

VALEN model of NSTX Upgrade VALEN computed RWM growth rate vs. B,
passive conducting structure =

Present NBI port 5 —e— With wall, 1 port
10 —— With wall, 2 ports
—e— No wall, 1 port
----e--=- NO wall, 2 ports
/"'— — ¢
ii @ 10
77/ ~ /)
,I.Ill = 10° , 2
®
|l{|‘ < 10° /
\) =
e L]
O 10
ol B
4 3 6 7
Passive plate BN
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Long-Wavelength MHD Stability at High Pressure Required

for ITER and Other Next-Step Devices

® Motivation

The resistive wall mode (RWM) is a primary cause plasma disruption at
high g

Understanding passive stabilization physics determining RWM stability
IS critical to extrapolate stability requirements for future devices

® Very brief history

Early theory: RWM can be stabilized by sufficient plasma rotation
Critical o, for passive stability assessed ((2;)
Low levels of (2. (< 0.5% Alfven at q =2) suggested

RWMs found to be unstable at relatively high o, and stablllty depends
on profile, not simple scalar value — no simple, fow © i

Stability model including kinetic effects evaluated (NSTX) - can explain
greater complexity of RWM marginal stability

Present effort: comparison of stability model in codes and experiments

@ NSTX
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