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NSTX is Addressing Global Stability Needs for Maintaining 

Low li, High Beta Plasmas for Fusion Applications 

 Motivation 

 Maintain high bN stability, validate 

predictive and control capability to allow 

confident extrapolation to ST fusion 

applications and ITER 

 Outline 

 Resistive wall mode stabilization at low internal 

inductance, li 

 RWM active control advances to improve stabilization 

 Model-based RWM state space controller (RWMSC) 

 Multi-mode RWM / DEFC spectrum for RWMSC use 

Fusion Nuclear 
Science Facility 

(FNSF) ST Pilot 
Plant 

ITER 
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RWM active stabilization coils 

RWM poloidal 

sensors (Bp) 

RWM radial sensors (Br) 

Stabilizer 

plates 

 High beta, low aspect ratio 

 R = 0.86 m, A > 1.27 

 Ip < 1.5 MA, Bt = 5.5 kG 

  bt < 40%, bN > 7 

 

 Copper stabilizer plates for kink 

mode stabilization 

 

 Midplane control coils 

 n = 1 – 3 field correction, 

magnetic braking of wf by NTV 

 n = 1 RWM control 

 

 Combined sensor sets now used 

for RWM feedback 

 48 upper/lower Bp, Br 

NSTX is a spherical torus equipped to study passive and 

active global MHD control 

3D Structure Model 

3 
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Improvements in stability control techniques significantly 

reduce unstable RWMs at low li and high bN 

bN 

 Initial experiments 

 48% disruption 
probability by RWM  

 

 Experiments with 
control enhancements 

 Significantly reduced 
disruption probability 
with control 
enhancements 

• 14% of cases with 

bN/li > 11 

li 
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Plasma internal inductance (li): 

 Integral measure of the peakedness of the current profile 

 Low li typical of non-inductive operation, and at high k (for vertical stability) 

Control: active     passive 
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≈ 

Improvements in stability control techniques significantly 

reduce unstable RWMs at low li and high bN 

bN 

li 
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 Computed n = 1 no-wall limit bN/li,~ 6.7 (low li range 0.4 – 0.6) 

 Synthetic equilibria variation: n = 1 no-wall unstable at all bN 
at li < 0.38 (current-driven kink limit) 

 significant for NSTX-U, next-step ST operation 

n = 1 no-wall limit 

 Initial experiments 

 48% disruption 
probability by RWM  

 

 Experiments with 
control enhancements 

 Significantly reduced 
disruption probability 
with control 
enhancements 

• 14% of cases with 

bN/li > 11 

• Much higher 

probability of 

unstable RWMs at 

lower bN, why?? 

RWM State Space 

Controller Utilized 

(NOTE: only two 

high bN/li shown – 

many more shots 

than this 
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≈ 

Improvements in stability control techniques significantly 

reduce unstable RWMs at low li and high bN 

bN 

li 

BetaN vs.li - Gridlines
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 Computed n = 1 no-wall limit bN/li,~ 6.7 (low li range 0.4 – 0.6) 

 Synthetic equilibria variation: n = 1 no-wall unstable at all bN 
at li < 0.38 (current-driven kink limit) 

 significant for NSTX-U, next-step ST operation 

n = 1 no-wall limit 

 Initial experiments 

 48% disruption 
probability by RWM  

 

 Experiments with 
control enhancements 

 Significantly reduced 
disruption probability 
with control 
enhancements 

• 14% of cases with 

bN/li > 11 

• Much higher 

probability of 

unstable RWMs at 

lower bN, why?? 

Examine RWM 

stability 

here 
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Kinetic stability calculations show reduced stability in low li 

target plasma as ωφ is reduced, RWM becomes unstable 

 Stability evolves 

 Computation shows stability at 

time of minimum li 

 Region of reduced stability vs. 

ωφ found when RWM becomes 

unstable (li = 0.49) 

 Quantitative agreement 

between theory/experiment 

 MISK, MARS-K, HAGIS code 

benchmarking (ITPA MDC-2) 

 MISK ωD calc. improved 

• (already good) agreement 

between theory/experiment 

improved (no free params.) 

• Best agreement with fast 

particle effects included 

 
 

140132, t = 0.704s 

unstable 

marginal 

stability 

(experiment) 

RWM stability vs. wf (contours of gtw) 

2.0 

1.0 

wf/wf
exp 

thermal 

w/fast particles 

- S.A. Sabbagh, et al., IAEA FEC 2008, Paper EX/5-1 

- J.W. Berkery, et al., PRL 104 (2010) 035003 

- S.A. Sabbagh, et al., NF 50 (2010) 025020 

- J.W. Berkery, et al., Phys. Plasmas 17, 082504 (2010) 

- S.A. Sabbagh, et al., IAEA FEC 2010, Paper EXS/5-5 

MISK code 

(more quantitative comparison to theory) 

(Key for NSTX/DIII-D unified result (IAEA 2010) 
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Combined RWM Br + Bp sensor feedback gain and phase 

scans produce significantly reduced n = 1 field 

 Favorable Bp + Br feedback (FB) 
settings found (low li plasmas) 

 Fast RWM growth ~ 2 - 3 ms 
control by Bp 

 Br FB controls (~10 ms ~ tw-radial) 
n=1 field amplification, modes 

 Time-evolved theory simulation of 
Br+Bp feedback follows experiment 

 

 

 

2.3

2.4

2.5

2.6

2.7

2.8

0 0.02 0.04 0.06 0.08 0.1 0.12

NSTX.TD.2011.02EFA

MIX180 top Br magnitude n=1 [gauss] wC
MIX090 top Br magnitude n=1 [gauss] wC
MIX000 top Br magnitude n=1 [gauss] wC
pl top Br n=1 magnitude [gauss]
vac top Br n=1 magnitude [gauss]

 B
r 

m
a
g
n
it
u
d
e
 n

=
1
 [

g
a
u
s
s
]

time [s]

pct above,  jpg below 

Dt (s)   (model) 

R
a
d
ia

l 
fi
e

ld
 n

 =
 1

 (
G

) 

180 deg FB phase 

90 deg FB phase 

0 deg FB phase 

Vacuum error field 

Vacuum error field 

 + RFA 

Simulation of Br + Bp control (VALEN) 

Br
n = 1 (G)

bN

li

wf
~q=2 (kHz)

Br FB phase = 0o

Br FB phase = 225o

Br FB phase = 90o

140124

140125

140126

140127

Br FB phase = 180o

t (s)

6

4

2

0
0.8
0.6

0.4

0.2
0.0

10
8
6
4
2
0

6

4

2

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Br
n = 1 (G)

bN

li

wf
~q=2 (kHz)

Br FB phase = 0o

Br FB phase = 225o

Br FB phase = 90o

140124

140125

140126

140127

Br FB phase = 180o

t (s)

6

4

2

0
0.8
0.6

0.4

0.2
0.0

10
8
6
4
2
0

6

4

2

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Feedback on 

Br Gain = 1.0 

140124 

140122 

139516 

No Br feedback 

t (s) 

bN 

li 

6 

4 

2 

0 
0.8 

0.6 

0.2 

0.0 

6 

4 

2 

0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Br Gain = 1.50 

Br
n = 1 (G) 

bN 

li 
0.4 

6 

4 

2 

Br gain scan 

Br FB phase scan 



NSTX 16th MHD MCM: RWM Stabilization State Space Control, Multi-component Sensors in NSTX (S.A. Sabbagh, et al.) Nov 21st, 2011 9 

RWM feedback using upper/lower Bp and Br sensors modeled 

and compared to experiment 

 Both Br, Bp feedback contribute to active control 

 Br mode structure and optimal feedback phase 

agrees with parameters used in experiment 

 Br feedback alone provides stabilization for growth 

times down to ~ 10 ms ~ tw-radial with optimal gain 

 Theory shows optimal feedback phase used in 

experiments; gain used is near optimal 

Toroidal angle (deg) 

Modeled Br field at sensors and midplane 
R

a
d
ia

l 
fi
e
ld

 (
G

) 

Br feedback phase (deg) 

G
ro

w
th

 r
a
te

 (
1
/s

) 

top sensors bottom sensors 

gain 2e5 

250 degrees 

midplane 

Passive growth 

Br sensors alone 

Br and Bp 

sensors 

DCON, VALEN 

codes 

Br gain (arb) 

G
ro

w
th

 r
a
te

 (
1
/s

) 

gain 2e5 

optimal gain 

RWM growth vs. Br feedback phase 

RWM growth vs. Br 

feedback gain 

MISK results, sensor measurements: use marginal ideal mode 

eigenfunction in RWM state space controller 
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Model-based RWM state space controller in NSTX 

advances present PID controller 

 PID (our present, successful workhorse) 

 Feedback logic operates to reduce n = 1 amplitude (n = 1 phase/ampl. input) 

 No a priori knowledge of mode physics, controller stability 

 Only knowledge of mode structure: spatial phase offset of upper/lower sensors 

 

 State space control 

 States reproduce characteristics of full 3-D model: conducting structure, 
plasma response, mode shape, feedback control currents via matrix operations 

• Boozer permeability model used for plasma response 

• A key quantity to compare to measurements is mode pitch at large R 

 Observer (computes sensor estimates) 

• RWM sensor estimates provided by established methods (Kalman filter) 

• useful as an analysis tool to compare plant output to measurements 

 Controller (computes control currents) 

• Controller gain computed by established methods: gains for each coil and state 

 Many shots taken in NSTX with RWM state space control 

 Two dedicated run days, near-record bN/li in sustained plasmas, gain/phase 
scans, hundreds of shots run with low gain (e.g. observer scoping studies) 
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New State Derivative Feedback Algorithm needed for Current 

Control 

 Previously published approach found to be formally “uncontrollable” when 

applied to current control 

 State derivative feedback control approach 

 

 

 

 new Ricatti equations to solve to derive control matrices – still “standard” 

solutions for this in control theory literature 

 

 

 

 

 

 

 

 

 

uDxCy

uBxAx




  

    



 cc  IxKu c




Control vector, u; controller gain, Kc 

Observer est., y; observer gain, Ko  

Kc , Ko computed by standard methods 

(e.g. Kalman filter used for observer) 

)ˆ(ˆ 

ˆ ˆ;  ˆ

)(

1

1

11

ttsensorsott

ttttt

yyKAxx

xCyuBxAx














Advance discrete state vector 

(time update) 

(measurement 

update) 
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e.g. T.H.S. Abdelaziz, M. Valasek., Proc. of 16th IFAC World 

Congress, 2005 

 State equations to advance 

- General (portable) matrix 

output file for operator 

- PCS code recently 

generalized by K. Erickson 

Written into the PCS (GA) 
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 Controller model can 

compensate for wall currents 

 Includes plasma mode-induced 

current 

 Potential to allow more flexible 

control coil positioning 

 May allow control coils to be 

moved further from plasma, 

and be shielded (e.g. for ITER) 

 

 Straightforward inclusion of 

multiple modes (with n = 1, or n 

> 1) in feedback 

12 

Model-based RWM state space controller including 3D 

model of plasma and wall currents used at high bN 

Balancing 

transformation 

~3000+ 

states 
Full 3-D model 

… 

RWM 

eigenfunction

(2 phases,    

2 states) 

)ˆ,ˆ( 21 xx
3x̂ 4x̂

State reduction (< 20 states) 

Katsuro-Hopkins, et al., NF 47 (2007) 1157 

Controller reproduction of n = 1 field in NSTX 
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 Improved agreement with sufficient 

number of states (wall detail) 

13 

Open-loop comparisons between sensor measurements and 

state space controller show importance of states and model 

A) Effect of Number of States Used 
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RWM state space controller sustains otherwise disrupted 

plasma caused by DC n = 1 applied field 

 n = 1 DC applied field 

test 

 Generate resonant 

field amplication, 

disruption 

 Use of RWM state 

space controller 

sustains discharge 

 

 RWM state space 

controller sustains 

discharge at high bN 

 Best feedback 

phase produced 

long pulse, bN = 

6.4, bN/li = 13 
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NSTX RWM state space controller sustains high bN, low li 

plasma 

RWM state space feedback (12 states) 

 Feedback phase 

scan 

 Best feedback 

phase 

produced long 

pulse, bN = 

6.4, bN/li = 13 
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Multi-mode computation for RWM & DEFC: 2nd eigenmode component has 

dominant amplitude at high bN in NSTX 3D stabilizing structure 

 NSTX RWM not stabilized by wf 
 Computed growth time consistent with 

experiment 

 2nd eigenmode (“divertor”) has larger 
amplitude than ballooning eigenmode 

 NSTX RWM stabilized by wf (or “a”) 
 Ballooning eigenmode amplitude 

decreases relative to “divertor” mode 

 Computed RWM rotation ~ 41 Hz, 
close to experimental value ~ 30 Hz 

 ITER scenario IV multi-mode spectrum 

 Significant spectrum for n = 1 and 2 

dBn from wall, multi-mode response 
dBn RWM multi-mode composition 

ideal eigenmode number 
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Multi-mode RWM spectrum in NSTX @ bN=5.54 has significant 2nd 

eigenfunction contribution, BR perturbation not greatly changed at large R 

17 
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ITER Advanced Scenario IV: multi-mode RWM spectra computation 

shows significant ideal eigenfunction amplitude for several components 
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NSTX is Addressing Global Stability Needs Furthering Steady 

Operation of High Performance ST / Tokamak Plasmas 

 Significant reduction in disruption probability in high bN 

plasmas with reduced li 

 Quantitative agreement between RWM marginal stability and 

kinetic stabilization theory for low li, high bN plasmas 

 Use of combined Br + Bp RWM sensor n= 1 feedback 

improves reduction of n = 1 field amplitude, improved stability 

 RWM state space controller sustains low li, high bN plasma 

 Potential for greater flexibility of RWM control coil placement and 

shielding in future burning plasma devices (e.g. FNSF, ITER) 

 Multi-mode spectrum computed for NSTX and ITER scenario IV for 

direct use in state space controller (RWM control & DEFC) 
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Reduced collisionality (n) is stabilizing for resistive wall 
modes, but only near kinetic resonances 

140132 @ 0.704 

J.W. Berkery et al., PRL 106, 075004 (2011) 

Marginal 

Stability 

 NSTX-tested kinetic RWM stability theory: 2 competing effects at lower n 

 Stabilizing collisional dissipation reduced (expected from early theory) 

 Stabilizing resonant kinetic effects enhanced (contrasts early RWM theory) 

 Expectations in NSTX-U, tokamaks at lower n (e.g. ITER) 

 Stronger stabilization near wf resonances; almost no effect off-resonance  

 Plasma stability gradient vs. rotation increases 

• important to avoid unfavorable rotation, suppress transient RWM with active control 

R
W

M
 g

ro
w

th
 r

a
te

 (
gt

w
) 

RWM growth rate contours (gtw) 

unstable 

u
n
s
ta

b
le

 

21 

Plasma rotation Plasma rotation 

C
o

lli
s
io

n
a

lit
y
 

off 

resonance 



NSTX 16th MHD MCM: RWM Stabilization State Space Control, Multi-component Sensors in NSTX (S.A. Sabbagh, et al.) Nov 21st, 2011 

Second NBI beam port in NSTX-U makes a small difference in 

with-wall limit 

22 

VALEN computed RWM growth rate vs. bN 
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Long-Wavelength MHD Stability at High Pressure Required 

for ITER and Other Next-Step Devices 

• Motivation 

 The resistive wall mode (RWM) is a primary cause plasma disruption at 
high b  

 Understanding passive stabilization physics determining RWM stability 
is critical to extrapolate stability requirements for future devices 

 

• Very brief history 

 Early theory: RWM can be stabilized by sufficient plasma rotation 

 Critical wf for passive stability assessed (Wcrit)  

 Low levels of Wcrit (< 0.5% Alfven at q =2) suggested 

 RWMs found to be unstable at relatively high wf, and stability depends 
on profile, not simple scalar value – no simple, low Wcrit! 

 Stability model including kinetic effects evaluated (NSTX) - can explain 
greater complexity of RWM marginal stability 

 Present effort: comparison of stability model in codes and experiments 


