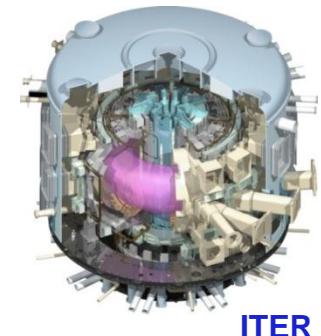



# Importance of ITER In-vessel Control Coils in Meeting Device Goals

S.A. Sabbagh<sup>1</sup>, T.E. Evans<sup>2</sup>, D. Humphreys<sup>2</sup>

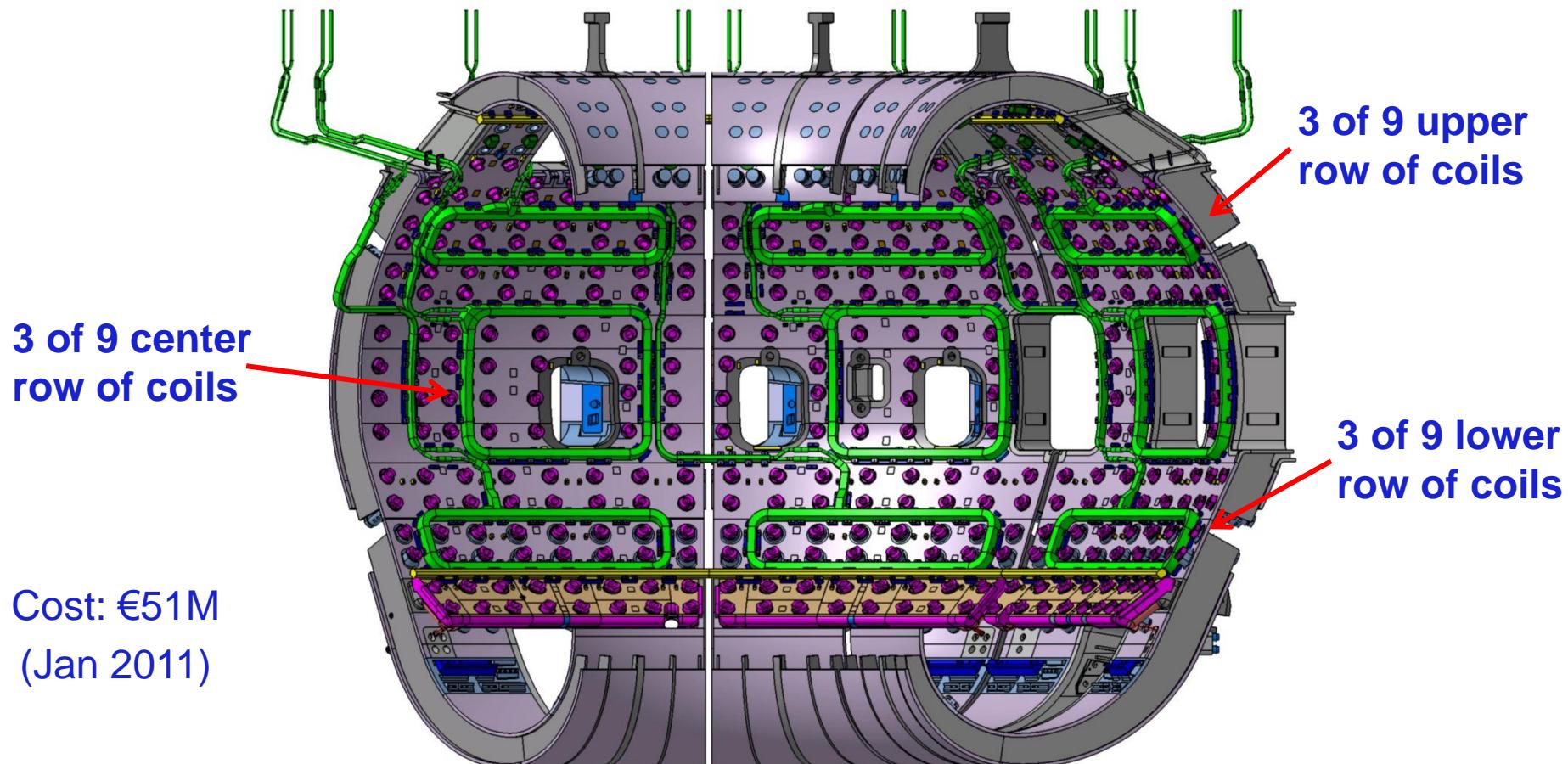
<sup>1</sup>*Department of Applied Physics, Columbia University, NY, NY*


<sup>2</sup>*General Atomics, San Diego, CA*



# US effort to elucidate the importance of the ITER in-vessel 3D control coils (IVCC) in reaching device goals

## ❑ Document


- ❑ Simple, short white paper defining key reasons to maintain the IVCC in the ITER design
- ❑ Physics reasons go beyond ELM mitigation



## ❑ History

- ❑ Triggered by APS DPP 2010 ITER Town Meeting ([Nov 2010](#))
  - G.S. Lee calls to exclude the IVCC from the baseline design
  - Request to G.S. to provide venue for further discussion not sufficiently addressed
- ❑ DG Motojima states IVCC will remain in design ([Jan 2011](#))
- ❑ White paper written, put through GA review, vetted to USBPO
  - Suggestion to not state that ITER could not fulfill mission without the IVCC
  - Authors do not fully agree - plan to revise language carefully
  - Document under 2<sup>nd</sup> revision, to be delivered to USBPO after 2<sup>nd</sup> GA review

# ITER 3D IVCC is a significant tool for control, and other key physics research



- ❑ The cost and design impact of such a significant tool requires that it be continually defended
  - ❑ N. Uckan reminds us that IVCC is in design, but not baseline budget

# ITER IVCC white paper aims to illustrate the larger picture of IVCC importance

- ❑ Document introductory sentence
  - ❑ *The ITER non-axisymmetric in-vessel control coil (IVCC) is a multi-functional coil that provides a variety of opportunities for enabling new physics discoveries and helps ensure the success of reaching ITER mission targets. (...)*
- ❑ Introductory summary of key points: *not* having the IVCC...
  - ❑ 1) may jeopardize the ITER mission of reaching  $Q = 10$
  - ❑ 2) increases the risk of damage to the device, potentially impacting the operating schedule and long-term cost of ITER for repairs
  - ❑ 3) reduces ITER's potential to reach key physics goals in support of DEMO, including the practical elimination of 3D physics studies on the device

# White paper: summary of physics points outlined to illustrate need to reach ITER goals, study required physics (I)

- ❑ Power handling
  - ❑ ELM suppression and mitigation
  - ❑ ELM pacing
- ❑ Disruption prevention / avoidance
  - ❑ Reduction of  $n > 1$  error fields - locked modes and NTV
  - ❑ Reduction of resonant field amplification
  - ❑ Resistive Wall Mode control and stabilization
  - ❑ Rotation of islands after locking to enable ECCD suppression
  - ❑ Control of transport transients
    - Transport barrier transients, gradient changes due to ELMs, etc.
    - Instability due to alteration of stabilizing fast particle population
  - ❑ Control of burn instability
  - ❑ Test of advanced control techniques for future devices
    - E.g. demonstrate dynamic control effectiveness of shielded IVCC

# White paper: summary of physics points outlined to illustrate need to reach ITER goals, study required physics (II)

## ❑ Disruption mitigation

- ❑ Reduction of wall forces during disruptions
- ❑ Suppression of runaway electrons during disruptions
- ❑ Nonaxisymmetric field control of runaway electron deconfinement following disruptions

## ❑ Transport

- ❑ H-mode power threshold minimization ( $n > 1$  fields)
  - Correction of  $n > 1$  fields can greatly reduce H-mode power threshold

Contributions from the entire community to future define the importance and need of the ITER IVCC are encouraged ([email](mailto:sabbagh@pppl.gov): sabbagh@pppl.gov)

# ITER IVCC white paper: course of action and evolution

- ❑ Complete 2<sup>nd</sup> draft and send to USBPO
  - ❑ Update based on results from APS DPP 2011
  - ❑ 2<sup>nd</sup> draft for GA review – Nov 2011
  - ❑ Presentation to USBPO to directly follow GA review completion
- ❑ Once approved by USBPO, send to ITER STAC
- ❑ Continue evolution of document
  - ❑ To include contributions from the community
  - ❑ To remain current, based on advances in present devices / theory
- ❑ Use document as a centerpiece for discussion if ITER IVCC construction and installation runs into budget issues

# ITER IVCC white paper: some points for discussion

---

- ❑ What further functions and physics should the IVCC be used to address in ITER?
- ❑ Should the approach to the ITER Organization be more proactive?
- ❑ To be effective at all, must the IVCC justification include a strong statement tying the IVCC to ITER reaching its goals?
- ❑ Should the role of physics studies enabled by the IVCC to answers issues for DEMO be further emphasized?