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Consider vertical field penetration
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Consider vertical field penetration




Consider vertical field penetration




Penetration time decreases as wall rotates

* Error field reaches a smaller value faster
* This Is a consequence of differential rotation
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Model for thin-wall calculations:

« Vacuum field structure is
(long cylinder approximation)
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coefficients generated

— Non-trivial solutions are the
Eigenmodes



Consider single wall m=1 Eigenmodes
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Introduce coupling from second wall <=

N,




Introduce differential wall rotation
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Introduce differential wall rotation
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Introduce differential wall rotation
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Speeding up of slow root is the observation .

 Results of calculation consistent with data
— Dotted lines are +/- 2% on wall time
— No free parameters

« This would not be observed on single-wall system

14



No Lock |
Lock




O | el

16



17

\
' 'y Volume Y
|
: C C ] | Surface S
» Treat plasma as rigid rotor, such that Vjy = rw
— Viscosity is infinite, dissipation present, like a motor
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\
Treat plasma as rigid rotor, such that Vy = rw
— Viscosity is infinite, dissipation present, like a motor

Torques act on whole plasma
Inertia Is negligible
Only electromagnetic torqgues remain

—

— Field is decomposed: B = B,,_g + Beyi + Be™ ™!
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EM Torque extended for wall rotation

« Perform a cycle-average, torgue takes this form
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 We know the field structure,
experimental geometry —
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EM torque extended to treat differential rotation g,

AL

» Curves are Doppler shifted and skewed
by wall rotation
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Error field torque depends on alignment .

* We leave general the relationship
between b and B..;

” — Both are measured



Z (cm)

* We measure a radial electric field in the plasma
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Phenomenological restoring torque

« Consider consequence of: w = Qr«B + 0w
Er +VobB, =n1J, Vo = rw
J. = Bz 40
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. Would be infinite in ideal MHD Hres

« Comparable to other torgues in our cold plasma
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Canonical torque balance
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Locking
Bifurcation
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m = 1 error field aids mode-locking

 Error field defines locking regime
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Bifurcations altered by wall rotation <.
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Bifurcations altered by wall rotation <.
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Bifurcations altered by wall rotation <.
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Bifurcations altered by wall rotation <.
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Bifurcations altered by wall rotation <.
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Bifurcations altered by wall rotation <.
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Bifurcations altered by wall rotation
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Feedback alters the torque balance, and it depends on the phase
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Conclusions

* Vertical field penetration time decreases as
wall rotation increases

« RWM mode-locking in our device shows
similar phenomenology to the torus

* Mode-locking modifications by wall rotation
explored and demonstrated

— Active control of ExB rotation through bias plates
would further this study

— Analogy to feedback gain will be pursued
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