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3D Fields Significantly Affect Tokamak Performance
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Evans, et al. Phys. Plasmas 13 (2006)
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A Predictive Capability Requires Understanding

Plasma Response

* Predictive capability is challenging because
plasma response is complicated

— Plasma may strongly enhance/suppress
spectral components of applied field

— New fields affect transport and rotation
— Rotation strongly affects plasma response

* New tools are being developed and applied
to gain predictive understanding (M3D-C1)
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e Basics of 3D Response
e Infroduction to M3D-C1

e Linear Results
— Influence of rotation
— lon rotation vs. Electron rotation
— When is a linear model appropriate?

* Implications for Stability Conirol
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3D Response Basics
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Resonant Fields Tear Surfaces:

Non-Resonant Fields Bend Surfaces
* Plot shows Fourier spectrum of B,

« B = component of applied field normal to equilibrium
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Poloidal Fourier Mode (m)
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Plasma Response Modifies Spectrum

Poloidal Fourier Mode (m) Poloidal Fourier Mode (m)

* |ldeal response 2 no islands = reduction in resonant
components

e Excited ideal modes =2 enhancement of non-resonant
components

0:0 GENERAL ATOMICS



Plasma Can Kink and Screen

*Kinking"” = 1.0 S
e Distorts
surfaces 0-9
0.3
=
. 0.7
Screening
 Eliminates 0.6
islands
0.5 .
—-14 -12 -10 -8 -6 -4 -2 0
m
DIII-D 126443

0:0 GENERAL ATOMICS



Numerical Methods (M3D-C1)
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M3D-C1 Can Calculate Two-Fluid Response
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e M3D-C1 is a two-fluid resistive
finite element code |

— Shares some design principles 1.0/
with M3D
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e Computational domain
includes plasma, separatrix,
and open field-line region

0.0

Z (m)

-0.5

e Unstructured mesh allows
resolution packing at rational
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e Both linear and nonlinear 1012 1416182029
models are implemented R (m)
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Two-Fluid Model
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« Complete (not reduced) [’rwo-fluid]model is
implemented

 Time-independent equations may be solved
directly for linear response
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Analysis Considers Reconsiructed DIlI-D Equilibria

 Vacuum fields generated by
DIII-D I-coils p/Colrlwduc’ring

 Boundary conditions:

- Vacuum B is held constant
at the boundary

- No-slip (v=0)

1 -Coils
e Readlistic fransport '
parameters

— Lundquist number ~ 107 0

 Toroidal rotation -1.0

— Rotation is added self- |

consistently: p # p(y) 1.00 145 191  2.36
R (m)
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Single-Fluid Results
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Single-Fluid Result:

Rotation (Usually) Improves Screening
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* Plasma may enhance resonant fields at low

rotation
* Large rotation screens resonant fields
* Response depends on beta

0:0 GENERAL ATOMICS



Why Is Plasma Response Sensitive to Rotation?

Why Is It Sensitive To Beta?

 From a (rotating) plasma’s perspective, the
static external fields are oscillating
— If field is oscillating faster than tearing
response, plasma won't tear

e Rotation drives static tearing modes away
from marginal stability

* Higher Beta moves modes closer to marginal
stability
— At marginal stability, an infinitesimal
perturbation yields an infinite response
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Single-Fluid Result:

Rotation Shear Increases Edge Response
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* Large rotation shear seems to increase edge response

e Why? Theory predicts Q' is destabilizing to low-n

° ° %k
peeling-ballooning modes™ . ;. . oia nucl. Fusion 47 (2007)

Aiba, ef al. Nucl. Fusion 50 (2010)
Ferraro, et al. Phys. Plasmas 17 (2010)

0:0 GENERAL ATOMICS



Rotation Improves Core Screening;

But Sheared Rotation Stochasticizes Edge

Vacuum Plasma, Staftic Plasma, Rotating
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Two-Fluid Results
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Two-Fluid Results: lon and Electron Rotations

are Distinct

 Given Q, we can change Q=Q+wm.. by adjusting
w.=d; p’/n
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Two-Fluid Effects Shift Resonance

(Mass) rotation at ¢g=3
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* Strongest tearing no longer occurs at Q=0
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Penetration In Core Depends on Eleciron Rotation

Perpendicular electron rotation at g =3
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e Screening of ¢=3 island clearly depends more
on Q¥ than Q2
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What is “Perpendicular” Electron Velocity?

 The perpendicular angular velocity is defined as
V”.vaw
R mwi

e,
Q" =

* To lowest order, v’ = R°0w* (y)Vop + A'B. Thus:

- VY xV .
Qj—,l =‘ w‘;‘ (p‘ a)e,l(w)

pe,,-'(w)

ne,iqe,i
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Edge Response Depends on Mass Rotation Shear

* Tearing of edge modes is dependent on ion,
not electron, rotation shear

(Mass) rotation at g=5
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When is Linear Response Appropriate?

* For typical experimental parameters, linear response
may not be strictly valid in some regions

— Large current density near rational surfaces
— Back-reaction on rotation is important
— “Displacement” shows

overlapping surfaces near
separatrix!

\ =\ “Displacement”
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~—— .- * Quantitative predictions of
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linear calculations are suspect
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Linear Response Gets Some Things Right

* Which modes are most sensitive

 How parameters (rotation, wscosﬂy, efc. ) affect
sensitivity 6—— . —

W

* How to optimize coil
design
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Summary of Theory/Modeling Results

e We can now quantify the dependence of plasma
response on parameters in experimentally
relevant regimes

 Tearing response is closely correlated with
rotation

e Core tearing is correlated with electron rotation

 Edge response is correlated with ion (mass)
rotation shear
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Confidence in Control Methods Require Model
Validation

* Linear modeling is probably sufficient for coil
optimization

 Nonlinear (or QL) modeling is necessary for
other things

— Changes to n=0 rotation/pressure profiles
— Locking bifurcation threshold
— Effect of 3D equilibrium on ELM stability

 Modeling to test/inform ELM suppression
hypotheses is underway
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Implications For ELM Suppression Control

e Empirical q,; resonances strongly imply that
current profile control will be necessary

e |tis not yet clear whether tearing is a necessary
condition for ELM stabilization
— If it is, then modeling implies rotation control might
e necessary

« ECCD (electron rotation control) can cause/heal
tearing

— Feedback on island size is not feasible

 If tfransport (in pedestal or at pedestal top) is
necessary, are there other ways of driving it?

0:0 GENERAL ATOMICS



