3D magnetic fields and plasma flow in helical RFX-mod equilibria

Paolo Piovesan

in collaboration with D. Bonfiglio, F. Bonomo, M. Gobbin, L. Marrelli, P. Martin, E. Martines, B. Momo, L. Piron, I. Predebon, A. Soppelsa, P. Zanca, B. Zaniol, and the RFX-mod team / Consorzio RFX, Padova, Italy

15th Workshop on MHD Stability Control
Madison, WI, USA, November 15th-17th, 2010
RFX-mod has the unique capability to reach high plasma currents up to 2MA in a RFP with the most sophisticated magnetic feedback system ever realized in a fusion device.

192 active coils independently controlled and 192 respective B_r and B_ϕ sensors

$R=2m$, $a=0.46m$
Self-organized helical equilibria

- At high plasma current a helical equilibrium with an electron internal transport barrier spontaneously forms [Lorenzini R. et al. 2009 Nature Phys. 5 570]

Flux surfaces from constant-p_e contours

Electron temperature ITB

\[m=1, n=-7 \]
Pros and cons of self-organization

- Helical equilibria result from a self-organization process, during which a $m=1/n=-7$ resistive kink-tearing mode nonlinearly saturates at large amplitude.
- But such self-organized states can be transiently perturbed by relaxation events.
Outline

- Helical RFP equilibria can be controlled by external 3D magnetic fields
- Helical flow and possible effects on ITB
- 3D magnetic fields as a knob to change the flow profile
- Conclusions and future work
• Helical RFP equilibria can be controlled by external 3D magnetic fields
• Helical flow and possible effects on ITB
• 3D magnetic fields as a knob to change the flow profile
• Conclusions and future work
Helical RFP controlled by external 3D fields

- An almost stationary helical equilibrium can be sustained by imposing a finite $m=1/n=-7$ $B_r(a)$ at the edge through magnetic feedback.
- Important for helical divertor operation [E. Martines et al. 2010 NF 50 035014]
The helical RFP becomes more and more stationary as the external 3D field increases.

A finite B_r near the edge was shown analytically to be a necessary condition for the existence of helical Ohmic RFP equilibria [Escande D.F. et al., APS 2009]
Weak external control required

- The helical deformation is mostly provided by internal currents
- The configuration is almost axi-symmetric at the edge
- Only weak external control is needed to sustain such equilibria

VMEC 3D equilibrium

m=1/n=-7 eigenfunction

W/O and WITH external 3D fields added
How external 3D fields affect performance

- Magnetic field stochasticity due to secondary modes decreases
- But the finite $B_r(a)$ increases the PWI and the confinement is slightly degraded $\sim 15\%$
- Performance may improve with a helical divertor

![Graphs showing secondary m=1 modes, m=0 modes, and τ_E with varying b_{1-7}/B.](image-url)
Outline

- Helical RFP equilibria can be controlled by external 3D magnetic fields
- Helical flow and possible effects on ITB
- 3D magnetic fields as a knob to change the flow profile
- Conclusions and future work
A dynamo electric field is required to sustain an Ohmic RFP equilibrium:

\[E_{\text{loop}} + \mathbf{v} \times \mathbf{b} = \eta j \]

In a single helicity equilibrium the dynamo can be driven by a laminar helical flow, \(\mathbf{v} \) [Bonfiglio D. et al. 2006 PoP 13 056102]

A global laminar flow may have beneficial effects on confinement

m=1 flow from a nonlinear MHD simulation of a helical equilibrium
Flow measurements in helical equilibria

- Multi-chord passive Doppler spectroscopy of CV and BV ions was used to determine the m=1 helical flow pattern

![Graph showing m=1, n=-7](image)

spectroscopy lines of sight
Multi-chord passive Doppler spectroscopy of CV and BV ions was used to determine the m=1 helical flow pattern.

The local 1/7 $B_r = b_{r1,7} \cos(\theta_d - 7\phi_d + \Phi_{1,7})$ correlates with the m=1 flow.

spectroscopy lines of sight
Flow measurements in helical equilibria

- Multi-chord passive Doppler spectroscopy of CV and BV ions was used to determine the m=1 helical flow pattern
A global helical flow forms

- The $m=1/n=-7$ flow pattern was reconstructed on a poloidal cross-section by fitting all lines of sight. Compatible with probe measurements at the edge
A global helical flow forms

- The $m=1/n=-7$ flow pattern was reconstructed on a poloidal cross-section by fitting all lines of sight. Compatible with probe measurements at the edge.

- The $m=1$ flow pattern resembles that from nonlinear MHD simulations of single helicity equilibria (SpeCyl code).
• ITB forms where q and the flow shear (10^4-10^5 s$^{-1}$) are maximum, with strong similarity with tokamak and stellarator results.
ITB forms where q and the flow shear (10^4-105s$^{-1}$) are maximum, with strong similarity with tokamak and stellarator results.

[M. Gobbin et al., submitted to PRL]
ITB forms where \(q \) and the flow shear \((10^4-10^5 \text{s}^{-1})\) are maximum, with strong similarity with tokamak and stellarator results.

[M. Gobbin et al., submitted to PRL]
Simulations with the GS2 gyrokinetic code predict micro-tearing modes to be unstable in the ITB region with $\gamma \sim 5 \times 10^4 \text{s}^{-1}$.

The measured shear flow 10^4-10^5s^{-1} could be sufficient or marginal for stabilization.

[Predebon I. et al. 2010 PRL 105 195001]
In nonlinear MHD simulations of single helicity equilibria, the flow shear peaks where \(q \) is maximum, i.e. where ITBs form.

[flux surface averages]

- **Safety factor**
- **Shear flow**

radius/a

helical flux label
Ambipolar electric fields

- Ambipolar electric fields and associated flows, originating from neoclassical transport and/or residual magnetic chaos, may be important.
- Such effects are being investigated with DKES+PENTA and ORBIT (M. Gobbin’s invited talk APS 2010).
- Sheared flows similar to the experimental ones or even larger predicted near the ITB.

![Graphs showing T_e (eV), V_{pol} (km/s), and V_{tor} (km/s)]
Possible links with tokamaks and stellarators

- ITB forms near q maximum or integer q surfaces
 - rarefaction of rational surfaces
 [Yu F. Baranov et al. 2004 PPCF 46 1181]
- Sheared flows around magnetic islands
 - reduce transport in the LHD stellarator
 [Ida K. et al. 2002 PRL 88 015002]
 - proposed as an ITB trigger in tokamaks
 [Dong J.Q. et al. 2007 PoP 14 114501]
- Ambipolar electric fields and associated flows
 - core electron root confinement in stellarators
 [Yokoyama M. et al. 2007 NF 47 1213]
 - NTV from non-resonant perturbations drives toroidal flow in tokamaks
Outline

- Helical RFP equilibria can be controlled by external 3D magnetic fields
- Helical flow and possible effects on ITB
- 3D magnetic fields as a knob to change the flow profile
- Conclusions and future work
Nonlinear MHD simulations with external 3D fields have been performed

- Both the shear flow peak and the q maximum move outward as $b_r(a)$ is increased
- External 3D magnetic fields may be used to improve ITBs

![Graphs showing 1/$7 b_r/B$ (%) vs radius/a, q profile, and shear flow (a.u.) vs helical flux label.](image_url)
External 3D fields affect the flow profile

- External 3D magnetic fields modify the flow profile also in experiment
- A 50% increase of the m=1 flow inside the ITB is observed
- Possible beneficial effects on ITB, dynamo, and error field screening, to be tested in near future experiments
External 3D fields affect the flow profile

- External 3D magnetic fields modify the flow profile also in experiment
- A 50% increase of the $m=1$ flow inside the ITB is observed
- Possible beneficial effects on ITB, dynamo, and error field screening, to be tested in near future experiments
Outline

- Helical RFP equilibria can be controlled by external 3D magnetic fields
- Helical flow and possible effects on ITB
- 3D magnetic fields as a knob to change the flow profile
- Conclusions and future work
Conclusions and future work

- External 3D magnetic fields allow to sustain and control helical RFP equilibria
- A global helical flow forms, which has probably an effect on ITB formation
- 3D magnetic fields can be used to modify the flow profile
- … and possibly to optimize ITBs in near future experiments
- Role of ambipolar electric fields being investigated with ORBIT and DKES+PENTA
- Combining in some way MHD and ambipolar effects in a single simulation is a challenging work, but it could be important to understand and optimize this scenario
portion of flattop with helical state

\[b_{\phi}^{m=1,n=7} / B \text{ at the edge} \]

Lundquist number

m=1/n=7

“secondary” modes

magnetic chaos

0.5 plasma current (MA) 1.5

portion of flattop with helical state

Lundquist number
$b_{\phi}^{m=1,n=7}/B$ at the edge

Poincaré plots of magnetic field lines including the equilibrium and the 1/7 helicity (no “secondary” modes)
MAGNETIC ISLAND
\[b_\phi^{1.7}/B = 2\% \]

SINGLE-HELICAL-AXIS
\[b_\phi^{1.7}/B = 5\% \]

- \[R/L_{T_e} \sim 20-30 \]
- \[\chi_e \sim 5-10 m^2 s^{-1} \]