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Theses

• The effects of 3-D shaping can impact the stability properties of
MHD modes.
– Many studies in the last decade have been concerned with

the effects of 3-D shaping on local eigenvalues (ballooning,
microinstabilities)

– Theoretical tools have been developed to address 3-D
shaping --- method of profile variations, local 3-D equilibria

• Isolate important geometric effects --- curvature, normal
torsion, local shear

– These tools can be applied to understand local stability
properties of nearly axisymmetric equilibria perturbed by
small 3-D fields (e. g., RMP modification of H-mode
equilibria)
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Motivation

• There are a number of circumstances where the presence of 3-
D fields modify ‘axisymmetric’ toroidal equilibria
– Field errors, ripple
– MHD modes
– Applied control coils (e. g., RMP control of ELMs)

•  A number of physical processes at play
– Topology change (resonant field errors producing magnetic

islands)
– Impact of plasma flow (i. e., NTV damping of toroidal flow)
– 3-D shaping of magnetic fluxes --- affect stability
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The result of shielded applied resonant
magnetic perturbations (RMP) is a 3-D

distorted equilibrium
• Initial motivation of the applied RMP was to affect edge MHD

stability by producing overlapped magnetic islands that flatten
profiles--- characterized by Chirikov overlap parameter (Evans
et al ‘07).
– Rotation shields field error penetration

– Results is 3-D distorted equilibria with negligibly small
islands! 
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3-D equilibria conventionally described by
stellarator equilibrium codes

• Understanding properties of 3-D MHD equilibria is crucial for
stellarator physics and important in general magnetic
confinement
– Most computational models for 3-D equilibria rely on an

MHD model (VMEC, PIES, HINT, SIESTA, etc.)  but have
different treatments for islands/regions of stochasticity.

– 3-D MHD stability tools typically assume the existence of flux
surfaces.

• Optimizing stability properties with respect to 3-D shaping
effects is highly desirous
– 3-D shaping scans with global codes are largely impractical
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3-D shaping scans can be performed
for local stability analysis

• 3-D shaping scans can be used for local stability analysis
through the use of ‘local 3-D equilibria”  (CCH, PoP ‘00).
– Starting point for conventional ballooning analysis is an

evaluation of the ‘local’ eigenvalue --- determined by the
properties of a single flux surface  --->  Global eigenmode
constructed from the properties of local eigenvalues

– Constructions of sequences of local equilibria
• Method of profile variations (vary two profile functions)

– Axisymmetric geometry - Greene-Chance NF ‘81
– 3-D extension - CCH and Nakajima ‘98

• Variation of shaping parameters
– Axisymmetric geometry - Miller et al ‘98
– Local 3-D equilibria - CCH ‘00
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Local 3-D equilibria are specified by the
coordinate mapping X(Θ,ζ) and two profiles

• Near the magnetic surface ψ = ψo, the magnetic coordinates are
characterized by the inverse mapping (Θ,ζ) = straight-field line angles

– X and two profile quantities can be free chosen ---> X’ is
determined by MHD equilibria conditions

– J and B are determined by X, (ιo = 1/q at ψ = ψo)

– Condition J.n = 0 produces an equation for the Jacobian
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Important geometric quantities are
described by X

• Unit normal and tangent vectors are described by X(Θ,ζ)

• Components of the curvature and torsion vector are calculated
from X
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Coordinate mapping X(Θ,ζ) determines |B|
and Pfirsch-Schluter current spectrum

• Magnetic field spectrum

• Pfirsch-Schluter coefficient is determined form quasineutrality
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The local magnetic shear can be
manipulated by magnetic geometry and

plasma profiles
• The local magnetic shear is defined by

• The local shear is related to geometry and profiles by an identity

• The local shear can be separated into an average shear and the
variation of the local shear
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Local helical axis equilibria models
quasihelically symmetric configuration

• 3-D shaping alter local shear
– Field line parameterized by

– Important geometric quantities! 
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3-D
ness

•Instability at s =0 (Anderson localization -
Cuthbert and Dewar ‘00)

• Loss of second stability (CCH and SRH ‘03)

•Field line dependence of eigenvalues

-p’
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Helical symmetry of helical axis equilibria
can be manipulated

• N = 5 quasi-helical equilibria with differing types of symmetry
spoiling
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Two different equilibria with 
varying degrees of toroidal
curvature
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The quasihelical symmetric configuration
does not show second stability

• Stability boundaries for 3 HSX equilibria (β = 0.7%, 2.2%, 3.6 %)

ι’

-p’ -->

ψ = 0.2 ψ = 0.6 ψ = 0.9

Qualitatively, the same features as the
analytic local 3-D equilibria

From Hudson et al, PPFC ‘04
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Analysis of LHD equilibria indicate core
second stable

• LHD equilibria characterized by second stable cores and an
approach to marginal stability at high β (Nakajima et al NF ‘07)

ψ = 0.25 ψ = 0.7
Lack of second 
stable region in
the edge

Two high beta LHD equilibria, β = 3.1%, 4.0%
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The effects of a small level 3-D shaping on
axisymmetric equilibria can be modeled

• X(Θ,ζ) specified with coordinates [R,φ,Z]=[R(Θ,ζ),−ζ,Z(Θ,ζ)]

– 3-D parameter γ controls the level of 3-D shaping relative to
an axisymmetric equilibria.  In the asymptotic limit (γ << ρo)
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A local ‘Miller’ equilibria perturbed by small
3-D components can be constructed

• Axisymmetric tokamak (κ = 1.66, δ = 0.416, A= 3.17, q = 3.03)
with small γ = 0.01 3-D component (M = 9, N= 3)

Flux surface shapes with γ 
= 0 and γ = 0.01

3-D perturbation produce
small distortion of the flux
surface shape
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Local shear is sensitive to 3-D fields

•The normal torsion near the
outboard midplane is strongly
perturbed by 3-D fields ---
 impacts local shear

•The 3-D fields weakly affect
the normal curvature at the
outboard midplane
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One can gain analytic insight by calculating
the local shear for a shifted circle equilibria

• For shifted circle equilibria (s−α) [s =- rι’/ι, α ~ -p’]

– The integrated local shear

– Instability tend to reside when local shear is zero
• 3-D shaping modifies local
shear
• Field line dependent of local
Instability  eigenvalue
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Preliminary calculations for Miller-like
equilibria with 3-D perturbations indicated a

deterioration of the second stable region
• Axisymmetric equilibrium (κ = 1.66, δ = 0.416, A= 3.17, q =

3.03)
– + small γ = 0.01 3-D component (M = 9, N= 3)
– 3-D calculation uses
field line ζo = 0 (maximum
impact).

Axisymmetric equilibrium
Miller + 3-D

S ~ q’

α ∼ -p’
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Recent advances in predicting the pedestal
width rely on kinetic ballooning and

peeling/ballooning model
• EPED1 model has had success in predicting the pedestal width

(Groebner et al ‘10).  Relies on two elements (Snyder et al ‘09)
– Intermediate n, peeling-ballooning  calculations (ELITE)
– Assertion that kinetic ballooning modes (KBM) control the

transport.  KBMs stability largely mirrors ideal MHD stability
From Snyder PoP ‘09 From Groebner NF ‘10
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EPED1 scaling is due to a marginal stability
scaling argument

• For Miller equilibrium
(Miller et al, PoP ‘98)

•Relevant marginal stability points are modeled as α ~ s-1/2

--->  Δped ~ (βθ)1/2

•3-D perturbations would generally lower this stability boundary

•From 3-D calculation
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3-D effects can effect both elements of the
EPED1 pedestal model

• KBM stability calculated using ideal MHD ballooning code
– In first stability region, these two calculations are correlated

• Peeling-ballooning modeling (ELITE) relies on an extension of
ballooning ordering, describes “global” eigenmode structure
– Requires Grad-Shafranov solution in the edge region

• 3-D shaping could affect both calculations
– Correlation of KBM stability to ideal ballooning stability in 3-

D equilibrium
– 3-D equilibrium model with a finite radial extent
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Summary

• Theoretical tools have been developed to address the effects
of 3-D shaping on local properties --- method of profile
variations, local 3-D equilibria --- applied to ballooning stability,
microinstability in stellarator

• These tools allow one to Isolate important geometric effects ---
curvature, local shear

• These tools can be applied to understand local stability
properties of nearly axisymmetric equilibria perturbed by small
3-D fields (e. g., RMP modification of H-mode equilibria)


