Helical structures and improved confinement in the MST RFP

Brett Chapman representing MST, Consorzio RFX, UCLA

A range of tearing spectra emerges spontaneously in MST

• Helical structure observed over entire range

<u>Outline</u>

- RFP equilibrium
- MST device
- Helical structure with flat spectra
- Helical structure with peaked spectra
- Helical equilibrium with very peaked spectra
 - internal detection of change in magnetic topology

Equilibrium provides many resonant surfaces

MST = Madison Symmetric Torus

- R = 1.5 m
- a = 0.52 m
- Magnetic field diagnosis by:
 - (1) Faraday rotation
 - (2) sensing coils at plasma boundary

Helical structure with flat mode spectrum

Spectrum fairly flat after sawtooth crashes

SXR structure observed post crash

P. Franz et al., Phys. Plasmas (2006)

Te structure observed post crash

Helical structure with peaked mode spectrum

Some spectra are very peaked

SXR structure observed with peaked spectra

Runaway electrons occur with peaked spectra

- Runaways not common in RFP
- Imply region of reduced stochasticity

D.J. Clayton *et al.*, Phys. Plasmas (2010)

ORBIT: largest electron energy in island region

Core Te increases with peaked spectra

Global energy confinement likely increased several fold

Emergence and detection of helical equilibrium on MST

In most-peaked spectra, equilibrium is helical

Faraday rotation diagnostic sensitive to change in equilibrium

Magnetic reconstructions track evolution of Faraday rotation zero crossing

Faraday rotation not a constraint in the reconstructions

Summary

- Helical structures common in MST
- Associated with confinement improvement
- Most-peaked spectra produce helical equilibrium
- Alteration of equilibrium detected by Faraday rotation
- Increases confidence in edge-based magnetic reconstructions