

Real-time control of tearing modes using a line-of-sight Electron Cyclotron Emission diagnostic

a system engineering approach

Bart Hennen (b.a.hennen@tue.nl)

Egbert Westerhof, Pieter Nuij, Hans Oosterbeek, Marco de Baar, Waldo Bongers, Andreas Bürger, David Thoen, Maarten Steinbuch and the TEXTOR team

Goal:

Establish a real-time tearing mode control system

- Localized ECRH/ECCD applied for stabilization and suppression:
 - Fast & accurate mode detection
 - Align ECRH/ECCD power deposition w.r.t. mode centre ("tracking")
 - Modulate ECRH/ECCD power synchronously with mode rotation (up to 5 kHz)

Why real-time feedback control?

guarantees fast and accurate alignment (100 ms, 1-2 cm), disturbance rejection, robustness and stability

- In general, tearing mode control systems use:
 - Mapping between ECRH/ECCD actuator & diagnostics
 - Equilibrium reconstruction/estimation + beam tracing codes in feedback loop

- Disadvantages:
 - Mapping introduces errors in control loop
 - Accurate calibration of actuator & sensor orientation required

(loss of orientation = loss of control)

- In general, tearing mode control systems use:
 - Mapping between ECRH/ECCD actuator & diagnostics
 - Equilibrium reconstruction/estimation + beam tracing codes in feedback loop

- - Mapping introduces errors in control loop
 - Accurate calibration of actuator & sensor orientation required

(loss of orientation = loss of control)

- Alternative: "line-of-sight principle"
 - → Use ECE diagnostic as feedback sensor in sight-line of ECRH/ECCD beam

- - Actuator and sensor are always aligned (refractive properties identical)
 - Guarantees tearing mode control even when launcher orientation is perturb or calibration is lost
 - Sensor is placed at distance from plasma (single access port needed)

- Alternative: "line-of-sight principle"
 - → Use ECE diagnostic as feedback sensor in sight-line of ECRH/ECCD beam

- Implementation in quasi-optical ECRH/ECCD transmission line on TEXTOR:
 - Radiometer: 6 channels, 132.5-147.5 GHz, 3 GHz spacing ~ 3 cm radial spacing
 - Frequency selective directional couplers separate ECE from ECRH/ECCD (nW power versus MW power)

Experimental instrumentation

Gyrotron 140 GHz, 1 MW, 10 s

• Bi-directional, steerable launcher (tor. & pol.)

Line-of-sight ECE diagnostic

National Instruments DAQ & RT control system

(Labview based, DAQ & Field Programmable Gate Array: sampling rate 100 kHz)

Real-time tearing mode identification

Real-time tearing mode identification

Real time tearing mode detection from correlation between ECE fluctuations (algorithm implemented on FPGA):

"Compute normalized correlation between ECE channels and apply weighted average over all possible channel combinations"

Channel pair with 180° phase reversal

f_{EC, tearing mode} GHz

Clock-rate computation on FPGA:

16 µs

Estimate of mode location in the ECE spectrum for a given launcher orientation

Real-time tearing mode identification (Example)

■ Match actuator frequency 140 GHz with sensor frequency $f_{EC, tearing mode}$ GHz through launcher steering (elevation angle θ)

- Launcher control loop
 - Analysis launcher dynamics using Frequency Response Function measurement $H_{launcher}(s)$
 - Controller designed using "loop-shaping" in frequency domain
 - C_{launcher}(s) = PID controller + lead/lag + low-pass filter
 - Feed-forward for friction compensation

- Launcher control loop
 - Analysis launcher dynamics using Frequency Response Function measurement $H_{launcher}(s)$
 - Controller designed using "loop-shaping" in frequency domain
 - C_{launcher}(s) = PID controller + lead/lag + low-pass filter
 - Feed-forward for friction compensation

Performance:

- Response: $\theta = \pm 30^{\circ}$ in 100 ms
- Max. steady-state positioning error: 0.6°
- Bandwidth: 12 Hz

Tearing mode "tracking" loop

Tearing mode "tracking" loop

- Tearing mode "tracking" loop
 - Minimize error: e = 140 f_{EC, tearing mode} [GHz]
 - $C_{tearing\ mode}(s)$ = PI controller + low-pass filter <u>Launcher control loop:</u>

clock rate identification algorithm on FPGA: 16 μs

2/1 tearing mode <u>search-and-suppress</u>

- \bullet $\theta_{\text{initial}} = 5^{\circ}$
- $B_t = 2.25 \text{ T}$
- $I_p = 300 \text{ kA}$
- Continuous ECRH/ECCD 200 kW, 1 sec.
- DED triggeredm/n = 2/1 mode
- Controller active from t = 2-4 sec.
- Automatic trigger gyrotron

2/1 tearing mode <u>search-and-suppress</u>

- $\theta_{\text{initial}} = 5^{\circ}$
- $B_t = 2.25 \text{ T}$
- $I_p = 300 \text{ kA}$
- Continuous ECRH/ECCD 200 kW, 1 sec.
- DED triggeredm/n = 2/1 mode
- Controller active from t = 2-4 sec.
- Automatic trigger gyrotron

2/1 tearing mode complete suppression

- $\theta_{\text{initial}} = 5^{\circ}$
- $B_t = 2.25 \text{ T}$
- $I_p = 300 \text{ kA}$
- ContinuousECRH/ECCD 200kW, t = 3-4 sec.
- DED triggeredm/n = 2/1 mode
- Controller active from t = 2-5 sec.
- Mode suppressed at t = 3.085 sec.

Next: Tearing mode <u>tracking</u> experiment

Ramp in toroidal magnetic field B_t

Mimic change in tearing mode location

(ECRH/ECCD deposition location and r_s perturbed)

- $B_t = 2.25-2.35 T$
- $I_p = 300 \text{ kA}$

- 7 cm shift ECRH/ECCD deposition
- 0.5 cm shift r_s
- launcher should move ~ 6° up

2/1 tearing mode tracking experiment

- $\theta_{\text{initial}} = 5^{\circ}$
- $B_t = 2.25 2.35 T$
- $I_p = 300 \text{ kA}$
- No ECRH/ECCD
- DED triggeredm/n = 2/1 mode
- Controller active from t = 2-5 sec.
- Alignment maintained duringBt ramp

2/1 tearing mode tracking experiment

- $\theta_{\text{initial}} = 5^{\circ}$
- $B_t = 2.25-2.15 \text{ T}$
- $I_p = 300 \text{ kA}$
- ContinuousECRH/ECCD 200kW, t = 2.3-4.3 sec.
- DED triggeredm/n = 2/1 mode
- Controller active from t = 2-5 sec.
- Alignment maintained during Bt ramp

Phase Locked Loop (synchronous ECRH/ECCD modulation on O-point)

Input PLL:

Line-of-sight ECE signal (e.g. 2nd channel: 135.5 GHz)

Monitor tearing mode's frequency and phase

Phase Locked Loop (synchronous ECRH/ECCD modulation on O-point)

Input PLL:

Line-of-sight ECE signal (e.g. 2nd channel: 135.5 GHz)

Output PLL:

Block-wave with controlled frequency & phase (maintains 90° phase difference relative to 1st harmonic of noisy ECE input signal)

Phase Locked Loop (synchronous ECRH/ECCD modulation on O-point)

Input PLL:

Line-of-sight ECE signal (e.g. 2nd channel: 135.5 GHz)

Output PLL:

Block-wave with controlled frequency & phase (maintains 90° phase difference relative to 1st harmonic of noisy ECE input signal)

PLL: operational domain: 300 Hz - 5 kHz

Phase Locked Loop (synchronous ECRH/ECCD modulation on O-point)

Input PLL:

Line-of-sight ECE signal (e.g. 2nd channel: 135.5 GHz)

Output PLL:

Block-wave with controlled frequency & phase (maintains 90° phase difference relative to 1st harmonic of noisy ECE input signal)

Note: focus on O-point by adding constant phase shift $\Delta \varphi$

Synchronous ECRH/ECCD modulation on O-point

Synchronous ECRH/ECCD modulation on O-point

Synchronous ECRH/ECCD modulation on O-point

Conclusions

- Real-time tearing mode control system established on TEXTOR:
 - ☑ Line-of-sight ECE applied as feedback sensor in control loop with steer-able launcher and gyrotron as actuators
 - ☑ Algorithm for real-time detection of tearing modes implemented and demonstrated experimentally
 - ☑ Launcher dynamics analyzed and optimized through controller design (FB + FF)
 - ☑ ECRH/ECCD deposition aligned w.r.t. mode by matching actuator and sensor frequency in feedback loop (through launcher steering)

Conclusions

- Real-time tearing mode control system established on TEXTOR:
 - ☑ Alignment achieved accurately and fast with a simple controller
 - ☑ Tearing mode search-and-suppress demonstrated experimentally (both stabilization and full suppression achieved)
 - ☑ Tracking capabilities control system demonstrated experimentally (subject to Bt ramp; mimic perturbation on tearing mode location)
 - ☑ Synchronous ECRH/ECCD modulation on O-point of tearing mode using phase locked loop demonstrated experimentally

Future developments:

- Implement "Line-of-sight ECE" in waveguide environment (long pulse operation)
- Design of advanced controllers (model-based, including tearing mode dynamics)
- Increase number of radiometer channels (enhanced mode identification)
- Full control over tearing mode's width

Open questions:

- How to deal with locked modes?
- How to predict mode occurrence in advance?

