Two-Dimensional Magnetohydrodynamic Simulations of Time-Dependent Poloidal Flow.

L. Guazzotto R. Betti

University of Rochester and Laboratory for Laser Energetics

MHD Workshop Princeton, November 11 2009

Motivation

- Poloidal flows in tokamaks are receiving an increasing attention, as newer and better flow measurements keep increasing the amount of available experimental information.
- MHD theory predicts that when the poloidal velocity is transonic with respect to the poloidal sound speed $(C_{sp} \equiv C_s B_p/B)$, a discontinuity/pedestal will form at the transonic surface¹. This discontinuity is NOT a shock.
- We want to verify the theoretical predictions with time-dependent simulations, and to determine how much flow is required to form such a pedestal at the plasma edge.

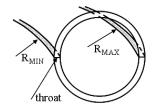
¹R. Betti and J. P. Freidberg, Phys. Plasmas **7**, 2439 (2000)

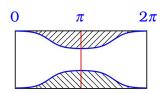
Outline

- 1 Theory and Model
- 2 Numerical Techniques
- Results

The Magnetic Field creates a de Laval Nozzle for the Poloidal Flow

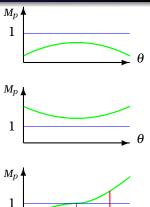
- In ideal MHD, the frozen in condition holds: plasma cannot flow across magnetic surfaces.
- Due to toroidal geometry, in a tokamak the cross section between any two nested magnetic surfaces varies with the poloidal angle.
- For the poloidal flow, nested magnetic surfaces act as a de Laval nozzle.





Due to the Geometry, Shocks (time-dependent) or Discontinuities/Pedestals (steady-state) form in the plasma

- The relevant velocity is the poloidal sound speed $C_{sp} = C_s B_p / B$.
- Due to periodicity:
 - If the flow becomes supersonic at the nozzle throat, a shock will form
 - At steady state shocks are not allowed, and the flow can be sonic only at the nozzle throat.
 - At steady state, contact discontinuities will remain between the subsonic and supersonic region.



The standard MHD model is used...

We solve the standard ideal-MHD model time-dependent equations:

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{V}) &= 0, & \text{(Continuity)} \\ \frac{\partial \rho \underline{V}}{\partial t} + \nabla \cdot \left(\rho \underline{V} \underline{V} - \underline{B} \underline{B} + P \underline{\underline{I}} + \underline{\underline{\Pi}} \right) &= 0, & \text{(Momentum)} \\ \frac{\partial \underline{B}}{\partial t} &= \nabla \times (\underline{V} \times \underline{B}), & \text{(Faraday's Law)} \\ \frac{\partial \mathscr{E}}{\partial t} + \nabla \cdot \left[(\mathscr{E} + P) \underline{V} - \underline{B} (\underline{V} \cdot \underline{B}) \right] &= 0. & \text{(Energy)} \end{split}$$

The equations are written in conservative form to ensure conservation of physical quantities.

...with the usual definitions

The standard definitions are used:

$$P \equiv p + \frac{B^2}{2}$$
 (Total Pressure)

$$\mathscr{E} = \frac{p}{\gamma - 1} + \rho \frac{V^2}{2} + \frac{B^2}{2},$$
 (Total Energy)

where γ is the adiabatic index, p the pressure, ρ the density, \underline{V} the total plasma velocity, \underline{B} the magnetic field. In this presentation, $\mu_0=1$ is used for convenience. The pressure tensor $\underline{\Pi}$ represents numerical viscosity.

Axisymmetry is assumed.

Simulations use a predictor-corrector scheme in Cartesian coordinates

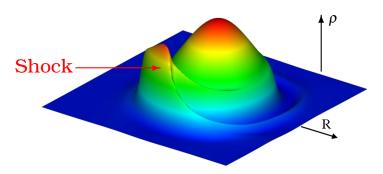
- A standard predictor-corrector method in Cartesian coordinates gives the best performance.
- Artificial numerical dissipation is needed to prevent spurious overshoots.
 - In particular, numerical diffusion is needed at (rather, behind) the shock front.
- A projection scheme² is used to enforce the $\nabla \cdot \underline{B} = 0$ constraint.

Initial and Boundary Conditions

- The initial conditions are assigned using a static equilibrium; equilibrium calculations are performed with FLOW³.
- Velocity is added with an "arbitrary" initial profile, or a momentum source is turned on at t = 0.
- Reflective boundary conditions are used at the plasma boundary (superconductive wall).
- A gridless method was implemented for the corner points.

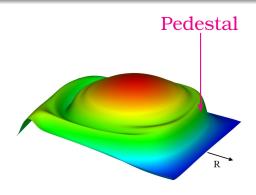
 $^{^3}$ L. Guazzotto, R. Betti, J. Manickam and S. Kaye, Phys. of Plasmas, ${f 11}$, 604 (2004)

In ideal MHD, Shocks form due to Poloidal Flow



- A shock is observed at the transonic surface.
- The shock travels in the poloidal direction from the outboard to the inboard part of the plasma.

Simulations show that Density Pedestals form due to Poloidal Flow

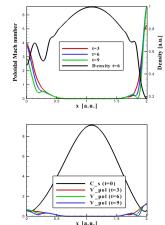


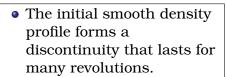
Density Pedestal

Density Pedestal (flat ρ input)

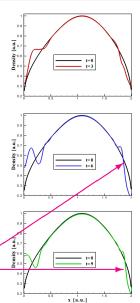
Transonic Discontinuities develop even with small velocities.

- A system with initial fairly flat density profile is evolved.
- Momentum is inserted with a source $\sim r$ for r/a > 0.5.
- Time is in arbitrary units; at the transonic surface $\tau = 2\pi r_{trans}/C_{sp} \simeq 6.7$ (time for a sound wave poloidal revolution).
- Discontinuities form with $V_{\theta} \ll C_{\rm S}|_{r=0}$.





- Similarly, velocity, Mach number and pressure are discontinuous at the transonic surface.
- The source is turned off at t = 1.5.



Pedestal

Discussion [1]

- Time-dependent simulations show the formation of shocks when the poloidal flow become supersonic $(V_{\theta} > C_{sp})$.
- Radial contact discontinuities (pedestals) are present at steady-state.
- Results are in agreement with the predictions of theory.

Discussion [2]

- This behavior was verified with simulations in several different conditions (only a few selected cases are presented).
- In particular, discontinuities form when the flow becomes supersonic, either due to a time-dependent source, or a transonic initial condition.
- Interestingly, if the flow is driven by a source, a case-dependent threshold in the source power is observed: If the source is weaker than the threshold, no discontinuities form, even if the source is left on for many poloidal revolutions.

Conclusions

- Transonic poloidal flow is studied in axisymmetric configurations.
- Transonic flow creates discontinuities in plasma pressure and density, separating a subsonic (core) and a supersonic (edge) region.
- Discontinuities form even for poloidal velocities much smaller than the sound speed in the plasma core ($\sim 10 \text{s km/s}$).

