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Brief Summary & Motivation
• A new matching method for Resistive Wall Mode (RWM) analysis of 

rotating plasmas, which resolves some difficulties in existing theories, has 
been formulated and a preliminary, fast numerical code has been developed.

• The present method
– retains rotation effects in the vicinity of some surfaces (e.g. rational 

surface), thus enables the detailed analysis and much save of 
computation time.

– can be applied to external modes such as RWMs
– can be used to study selectively where the rotation effects becomes 

essential, at rational surface or plasma surface. 

The plasma displacement of n=1 RWM in JT-60U E46710 discharge.
Numbers denote the poloidal mode number. m=2 is dominant.

M. Takechi et al., 
PRL 98, 055002 (2007)

q=2/1 rational surface



  

Frieman-Rotenberg Equation Governs the Linear Dynamics of 
Rotating Plasmas

: Lagrangian displacement
: equilibrium rotation

Hermiteanti-Hermite

: generalized force operator including rotation effects

: generalized Newcomb equation

: static (conventional) Newcomb equation

inertia Coriolis force Generalized potential force

E. Frieman & M. Rotenberg, Rev. Mod. Phys. 32, 898 (1955).
Non-Hermicity  No energy principle exists.[P.J. Morrison (1999)].

        We employ an initial value approach.

Some definitions



  

Hamilton Form of Frieman-Rotenberg Equation

Momentum vector 

The new operator 

is suitable for numerical computation because the bilinear form 

does not contain term that gives a sourcerelated to

of big numerical error. 



  

Full Implicit Scheme Enables Bilinear 
Formalism 

To study slowly growing modes such as RWMs, the full implicit 
scheme has been employed.

The above can be solved by bilinear formulation and finite element 
method

where



  

Symmetric Bilinear Form Is Suitable 
for Finite Element Approximation

Obviously symmetric form.  It’s helpful for finite element method
(resulting in a large band matrix).



  

The “Classical (Asymptotic)” Matching Method

• Successful in 1D problem
– R.D. Hazeltine & J.D. Meiss, Plasma Confinement

• Few numerical code for 2D (tokamak) geometry (only PEST?)
– Needs numerical equilibrium with extremely high accuracy

Newcomb 
equation

outer regionouter region

Inner layer solution is asymptotically
matched. 
The model can be flexibly changed 
and study in detail the inner physics.

Solution to Newcomb
equation is non-square 
integrable at the rational 
surface.



  

A New Matching Method Resolves the Difficulties

• The inner layer has finite width  Newcomb equation is regular.  Thus we 
have numerically tractable regular solutions in outer regions. 

• We have developed a numerical code for cylindrical plasmas to verify the 
effectiveness of present method. 
– Application to internal kink mode is shown in S. Tokuda, J. Shiraishi, 

Y. Kagei & N. Aiba, 22nd IAEA FEC TH/P9-20

Newcomb 
equation

outer regionouter region

Inner layer solution to the initial value 
problem of Frieman-Rotenberg equation
is numerically matched such that 
the normal component of the Lagrangian 
displacement is smooth.

Solution to Newcomb
equation is regular.



  

Detail of New Matching Method (1)
Solutions in outer regions where the inertia can be neglected

inner layer
outer region, L outer region, R

plasma
surface

Boundary conditions for

for

for

: undermined constants



  

Detail of New Matching Method (2)
Inner layer solution to full implicit form of Frieman-Rotenberg eq.

solutions to homogeneous eq. under inhomogeneous boundary condition

for

for

solutions to inhomogeneous eq. under homogeneous boundary condition

General solution is 



  

Detail of New Matching Method (3)
Matching condition = radial component of displacement is 
                                    smooth at matching positions
                                 linear simultaneous equation for           
                                     for each time step 

where

This linear equation is very easy to solve numerically.



  

Test : n=1 Ideal External Kink Mode (1)
First let us start to study the n=1 ideal external kink. 

plasma 
surface

ideal wall 
or 

resistive wall
rational
surface

outer region “inner layer”

inner vacuum
(Maxwell eq.)

generalized
Newcomb 
eq.

initial
value 
problem 
of FR eq.

m/n

outer vacuum
(Maxwell eq.)

Maxwell eq. and Ohm’s law



  

Test : n=1 Ideal External Kink Mode (2)
To test the code, set the wall infinite far and use the “flat current 
density” equilibrium.

Radial displacement when 
qa=1.3. The matched solution 
agrees well with the global one.

Error between matched 
solution and global one 
for some Δr. The error is 
quite small even when 
Δr=0.1.

Stability diagram for the 
uniform current model 
corresponding to n=1. The 
inner layer width is Δr=0.1.



  

Formulation for RWMs (1)

Current density on resistive wall and vacuum magnetic field

Ampere’s law and Faraday’s law

Resistive wall dynamics = pre-Maxwell eq. and Ohm’s law

in inner vacuum

in outer vacuum

: shell width

in resistive wall



  

Formulation for RWMs (2)
With the aid of “thin shell approximation,”
Bilinear form of initial value problem of Frieman-Rotenberg equation
and resistive wall dynamics 

ADDITIONAL TERMS

: outer vacuum magnetic energy
: inner vacuum magnetic energy

: diffusion at resistive wall

－(*)



  

Formulation for RWMs (3)
Boundary conditions

is the additional degree of freedom.

The normal magnetic field is continuous at the plasma surface and resistive wall.

New band matrix

original band 
matrix

additional 2×2 matrix

= original RHS vector

additional RHS term

 ξ

Bwall



  

Application : n=1 RWM (1)

Radial displacement of matched and 
global solutions when Δr=0.15. 
Both agree well.

Error between matched solution and 
global one for some inner layer width.
The outer region is modeled by 
generalized Newcomb equation.

Let us assume rigid poloidal rotation (rotation speed at plasma surface=4.6e-4va). 
Setting Rext=1.05 can stabilize the external kink mode, 
but finite resistivity allows the RWM. 



  

Application : n=1 RWM (2)

RWM growth rate vs. poloidal rotation 
speed at plasma surface. As for matching analysis,
we have chosen Δr=0.4 to remove the resonant 
surface in the outer region. 
The outer region is modeled by generalized 
Newcomb equation.

Growth rate of matched and 
global solutions for Δr=0.15. 
Both agree quite well.



  

Development of 2D Code without 
Rotation (RWMaC) (1)

• RWMaC
– is based on MARG2D, ideal MHD stability code

• S. Tokuda and T. Watanabe, PoP 6, 3012 (1999).
– is for tokamak geometry
– has not yet contained rotation effect

Assuming that the plasma inertia can be neglected
in the whole plasma region, the bilinear form can be obtained by 
setting                      in (*)

D. Pfirsch and H. Tasso, NF 11, 259 (1971). 



  

Development of 2D Code without 
Rrotation (RWMaC) (2)

RWM growth rate vs. wall position b How the RWM growth rate diverges
when approaching bbcrit ?
－ Inverse of RWM growth rate vs. b

RWM growth rates agree quite well
when the wall is not near the marginal position.

•RWMaC is benchmarked against NMA (Normal Mode Approach) code 
[M.S. Chu et al., NF 43, 441 (2003).] by studying the Solov’ev equilibrium



  

Summary
• We have …

–  proposed a new matching method for RWM analysis of rotating plasmas
– developed a time-saving numerical code and verified the effectiveness of present method

• We will …
– study the rotation and rotation 
     shear effects on RWMs in detail
– study the RWMs in reversed 

shear plasmas to clarify in which
     layer the rotation effects are significant,
     rational surface or plasma surface
－ generalize the method to tokamak
     geometry (for low-n mode such as RWM, 
     the inner layer located at plasma surface
     and one more at focused 
     rational surface are sufficient)
－ include kinetic effects (especially trapped 
     particle effect) 
     by perturbation method



  

Motivation – Why RWMs?
• One of the most important physics issues in advanced tokamak regime is 

the stabilization of RWMs.

• Experiments have verified that the plasma rotation is promising for RWM 
stabilization.
– E.J. Strait et al., PRL 74, 2483 (1995).
– M. Takechi et al., PRL 98, 055002 (2007)
– H. Reimerdes et al., PRL 98, 055001 (2007).



  

MHD Theory Predicts the Stabilization 
by Plasma Rotation

• Stabilization of MHD modes by plasma rotation
– Internal kink modes

• F.L.Waelbroeck, Phys. Plasmas 3 1047 (1996).
– RWMs (rotation,kinetic effects + continuum damping)

• A. Bondeson & D.J. Ward, PRL 72, 2709 (1994).
• M.S. Chu et al., PoP 2, 2236 (1995).

• Theoretically, the critical rotation speed for RWM 
stabilization is the controversial issue.
– Rotation / Rotation shear at rational surface [G. Matsunaga et al., IAEA 

FEC Ex/5-2(2008).] ? or rotation effects at plasma surface　
– Which continuum damping?
– The present method can be applied to analyze the above queries. 



  

MHD Theory for Rotating Plasmas 
Has Some Essential Difficulties

• (2D) Equilibrium 
– Alfven singularity & Hyperbolicity

• E. Hameiri PoF 26 230 (1983).

• Linear stability 
– Non-Hermicity  No energy principle exists.

• P.J. Morrison, Stud. In Appl. Math. 102, 309 (1999).

• We invoke the initial value problem of ideal MHD 
model. 
– The linear dynamics is governed by the Frieman-Rotenberg 

equation.
• E. Frieman & M. Rotenberg, Rev. Mod. Phys. 32, 898 (1955).



  

Hybrid Finite Element for Cylindrical 
Plasmas

Since 

following non-polluting finite elements have been employed 

where

Then, the bilinear form reads with band matrix 



  

Test : m=1 Internal Kink Mode (1)

Comparison of radial displacement.
The matched solution coincides with 
the global one.

Comparison of evolution of norm.
Growth rate of matched solution agrees 
well with the global one, but slightly 
overestimates since matched analysis neglects
plasma inertia.

Let us assume rigid poloidal rotation and
chose as k= -0.2, Δr=0.2, Vedge=0.08va



  

Test : m=1 Internal Kink Mode (2)

Error between matched solution and global one. The outer regions are modeled by static or 
generalized Newcomb equation. The error depends on the model and inner layer width. 
The generalized Newcomb model reduces the error. Errors are quite small even 
for inner layer width Δr=0.15 for generalized Newcomb model. The error in inside
outer region is larger than outside one since magnetic shear is weak there.
The error is asymmetric with respect to the singular surface, which is shifted from the 
original resonant surface due to plasma rotation.



  

Development of 2D Code without 
Rotation (RWMaC) (2)

• RWMaC is benchmarked against NMA 
(Normal Mode Approach) code by studying 
the Solov’ev equilibrium

Contour of magnetic poloidal flux Pressure and safety factor profiles



  

Development of 2D Code without 
Rotation (RWMaC) (3)

● toroidal mode n=1

Eigenfunction in the plasma region
Eddy current induced by 
unstable RWM on the resistive shell

● Wall position parameter b := wall radius / plasma radius=1.1

Agrees with NMA

toroidal direction  

poloidal

in

out

in
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