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Brief Summary & Motivation

A new matching method for Resistive Wall Mode (RWM) analysis of
rotating plasmas, which resolves some difficulties in existing theories, has
been formulated and a preliminary, fast numerical code has been developed.

The present method

— retains rotation effects in the vicinity of some surfaces (e.g. rational
surface), thus enables the detailed analysis and much save of
computation time.

— can be applied to external modes such as RWMs

— can be used to study selectively where the rotation effects becomes
essential, at rational surface or plasma surface.
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The plasma displacement of n=1 RWM in JT-60U E46710 discharge.
Numbers denote the poloidal mode number. m=2 is dominant.




Frieman-Rotenberg Equation Governs the Linear Dynamics of
Rotating Plasmas

inertia Coriolis force  Generalized potential force
I
pO; € + 2,0@ V@tf FE
H_/
ant1—Herm1te Hermite

E. Frieman & M. Rotenberg, Rev. Mod. Phys. 32, 898 (1955).
Non-Hermicity = No energy principle exists.[P.J. Morrison (1999)].
We employ an initial value approach.

Some definitions

(& : :
§ :Lagrangian displacement

v : equilibrium rotation
F : generalized force operator including rotation effects

AN

F 5’ — 0 : generalized Newcomb equation

v FE =0 with 7 = 0 : gtatic (conventional) Newcomb equation



Hamilton Form of Frieman-Rotenberg Equation

C pO =|FE+ pv -V (ﬁﬁ{) — o7 VI,

pOL& = —pv - VE + pll

\

Momentum vector ﬁ — @tg + U - 65
The new operator ng fg-|- /O"l_;' 6 (”J' 65)

1s suitable for numerical computation because the bilinear form

— — 2
related to F'¢ does not contain |7 - Vﬂ term that gives a source

of big numerical error.



Full Implicit Scheme Enables Bilinear

Formalism
To study slowly growing modes such as RWMs, the full implicit
scheme has been employed.

{pﬁ + (At)pT - VII — (At)FE = pllia
pE + (At)pi - VE — (At)pll = péoua

The above can be solved by bilinear formulation and finite element
method

where



Symmetric Bilinear Form Is Suitable
for Finite Element Approximation
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Obviously symmetric form. It’s helpful for finite element method
(resulting in a large band matrix).



The “Classical (Asymptotic)” Matching Method
&

Inner layer solution is asymptotically
matched.

The model can be flexibly changed
and study in detail the inner physics.

Newcomb
equation

Solution to Newcomb
equation 1S non-square

0 E » 7 Integrable at the rational
“ T - g _ surface.
I
outer region outer region

* Successful in 1D problem
— R.D. Hazeltine & J.D. Meiss, Plasma Confinement

* Few numerical code for 2D (tokamak) geometry (only PEST?)

— Needs numerical equilibrium with extremely high accuracy



A New Matching Method Resolves the Difficulties

rér 1

Newcomb
equation

Inner layer solution to the initial value
problem of Frieman-Rotenberg equation
1s numerically matched such that

the normal component of the [Lagrangian
displacement is smooth.

Solution to Newcomb

A

equation is regular.

ﬁ
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outer region

* The inner layer has finite width > Newcomb equation is regular. Thus we
have numerically tractable regular solutions in outer regions.

* We have developed a numerical code for cylindrical plasmas to verify the

effectiveness of | present method.

— Application to internal kink mode i1s shown in S. Tokuda, J. Shiraishi,
Y. Kagei & N. Aiba, 22nd IAEA FEC TH/P9-20




Detail of New Matching Method (1)

Solutions 1n outer regions where the inertia can be neglected

plasma
outer region, L : outer region, R surfflce
inner layer T
0 L TR a

EL(r,t) = ep(t)EouL(r) |

3 = 0.8}
Er(r,t) = cr(t)Eout,R(T)
Boundary conditions for E_;ut’p (p=L,R) r;ﬁ'

— 04}
TL&IT(T'L) —= 1 for gout,L

TR&T(TR) — 1 for g:)ut,f{
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Detail of New Matching Method (2)
Inner layer solution to full implicit form of Frieman-Rotenberg eq.

f in D (?") solutions to homogeneous eq. under inhomogeneous boundary condition
7

TL&T(TL) — 1: TR&’F(TR) =0 for én,L

?"Lfr(T‘L) — 0: T"R&}(TR) =1 for gn,R

—3
n—+1 , _ N
f in_l_ (?" ) solutions to inhomogeneous eq. under homogeneous boundary condition
1
General solution 1s 08 N -
-n+1 _ n—|—1 06
g (T) - (T) rér I'E-’inL
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Detail of New Matching Method (3)

Matching condition = radial component of displacement 1s
smooth at matching positions
—> linear simultaneous equation for
for each time step ¢ ™'

(G )= (@)is)

where

A:( ;utL(rL)— 1 (7L) ~&l (L) - )

111 ,Li (TR) £0Ut:R (TR) :n,R

This linear equation 1s very easy to solve numerically.




Test : n=1 Ideal External Kink Mode (1)

First let us start to study the n=1 1deal external kink.

q ideal wall
t plasma rational o or
surface gurface resistive wall
mn e i
generalized | initial
Newcomb  {value Maxwell eq. and Ohm’s law
eq. . problem !
. of FR eq.
inner vacuum
1 (Maxwell eq.) outer vacuum
1 | (Maxwell eq.)
T

r'L 1 o Rext

outer region  “inner layer”



Test : n=1 Ideal External Kink Mode (2)

To test the code, set the wall infinite far and use the “flat current

density” equilibrium.
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Radial displacement when
q,=1.3. The matched solution

error

agrees well with the global one.

-0.0005

0.005
0.0045}
0.004 |
0.0035¢}
0.003
0.0025}
0.002
0.0015}
0.001 |
0.0005 |

0 010203040506070809 1
r

Error between matched
solution and global one
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uniform current model
corresponding to n=1. The
inner layer width is Ar=0.1.



Formulation for RWMs (1)

Resistive wall dynamics = pre-Maxwell eq. and Ohm’s law

— — —

V xB=puyj, 0B=-nVxj
Current density on resistive wall and vacuum magnetic field
;(7’; 0,2, t) = [’f‘\ X 6&(9, z, 1’;) 5(7’ — b) in resistive wall

— o . .
B =V X(_) in inner vacuum

E — ﬁ XH_) in outer vacuum
Ampere’s law and Faraday’s law

i (X (5,0, 2,8) = XU (1,0, 2,8)| = pon(6, 2, 1)

r—b

B, = —gAﬁ: d : shell width



Formulation for RWMs (2)

With the aid of “thin shell approximation,”
Bilinear form of initial value problem of Frieman-Rotenberg equation
and resistive wall dynamics

—

(€,10) + (I1, &) — (A#)(I1, 1)
(At)(E, 7 VID) + (A)(I, 7 - VE) + (AL)SW,

ADDITIONAL TERMS — (%)

oW1y  :inner vacuum magnetic energy

A

Wy :outer vacuum magnetic energy

Dw . diffusion at resistive wall



Formulation for RWMs (3)

Boundary conditions

The normal magnetic field is continuous at the plasma surface and resistive wall.

5WIV — (ga? Wall) ( ijall )
1 0Wov  |Bywanl|’
Dw « |Bywanl”

Bwan = B, (b) is the additional degree of freedom.

New band matrix
4 AV4 N\ ]

original band

matrix & — original RHS vector

\ /N B \

wa]l

additional 2%x2 matrix additional RHS term




Application : n=1 RWM (1)

Let us assume rigid poloidal rotation (rotation speed at plasma surface=4.6e-4va).
Setting Rext=1.05 can stabilize the external kink mode,
but finite resistivity allows the RWM.
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Radial displacement of matched and Error between matched solution and
global solutions when Ar=0.15. global one for some inner layer width.
Both agree well. The outer region is modeled by

generalized Newcomb equation.



Application : n=1 RWM (2)
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RWM growth rate vs. poloidal rotation
speed at plasma surface. As for matching analysis,
Growth rate of matched and we have chosen Ar=0.4 to remove the resonant
global solutions for Ar=0.15. surface in the outer region.
Both agree quite well. The outer region is modeled by generalized

Newcomb equation.



Development of 2D Code without
Rotation (RWMaC) (1)

* RWMaC

— 18 based on MARG2D, 1deal ME

stability code

* S. Tokuda and T. Watanabe, PoP 6, 3012 (1999).

— 1s for tokamak geometry

— has not yet contained rotation effect

Assuming that the plasma inertia can be neglected
in the whole plasma region, the bilinear form can be obtained by

setting A\t — oo1n (*)

oWp + oWy +0Wov + Dw =0

D. Pfirsch and H. Tasso, NF 11, 259 (1971).



Development of 2D Code without

Rrotation (RWMaC) (2)

*RWMaC is benchmarked against NMA (Normal Mode Approach) code
[M.S. Chu et al., NF 43, 441 (2003).] by studying the Solov’ev equilibrium
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RWM growth rates agree quite well
when the wall is not near the marginal position.

th rate vs. wall position b
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— Inverse of RWM growth rate vs. b
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Summary

* Wehave...
— proposed a new matching method for RWM analysis of rotating plasmas
— developed a time-saving numerical code and verified the effectiveness of present method
* Wewill...
— study the rotation and rotation
shear effects on RWMs in detail
— study the RWMs in reversed
shear plasmas to clarify in which
layer the rotation effects are significant, q inner layers
rational surface or plasma surface
— generalize the method to tokamak
geometry (for low-n mode such as RWM,
the inner layer located at plasma surface
and one more at focused
rational surface are sufficient)
— include kinetic effects (especially trapped
particle effect)
. 0 plasma
by perturbation method surface

m/ng---




Motivation — Why RWMs?

* One of the most important physics issues in advanced tokamak regime 1s
the stabilization of RWMs.
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* Experiments have verified that the plasma rotation is promising for RWM
stabilization.

— E.J. Strait ef al., PRL 74, 2483 (1995).
— M. Takechi ef al., PRL 98, 055002 (2007)
— H. Reimerdes et al., PRL 98, 055001 (2007).



MHD Theory Predicts the Stabilization
by Plasma Rotation

 Stabilization of MHD modes by plasma rotation
— Internal kink modes
* F.L.Waelbroeck, Phys. Plasmas 3 1047 (1996).
— RWNMs (rotation,kinetic effects + continuum damping)
* A. Bondeson & D.J. Ward, PRL 72, 2709 (1994).
* M.S. Chu et al., PoP 2, 2236 (1995).
* Theoretically, the critical rotation speed for RWM
stabilization is the controversial 1ssue.

— Rotation / Rotation shear at rational surface [G. Matsunaga et al., IAEA
FEC Ex/5-2(2008).] ? or rotation effects at plasma surface

— Which continuum damping?
— The present method can be applied to analyze the above queries.




MHD Theory for Rotating Plasmas
Has Some Essential Difticulties

+ (2D) Equilibrium
— Alfven singularity & Hyperbolicity
* E. Hameir1 PoF 26 230 (1983).

* Linear stability

— Non-Hermicity = No energy principle exists.
* P.J. Morrison, Stud. In Appl. Math. 102, 309 (1999).

* We invoke the 1nitial value problem of ideal MHD
model.

— The linear dynamics is governed by the Frieman-Rotenberg
equation.
* E. Frieman & M. Rotenberg, Rev. Mod. Phys. 32, 898 (1955).



Hybrid Finite Element for Cylindrical

Plasmas
4 ) m (i) + k(i)

—

Since V.¢

dX
r 1 (— +mY + kZ)
dr

following non-polluting finite elements have been employed
N, N,

CdX Xit1 — X Xjp1 + X
5 =2 T enp), X)) =) e )

r;—rT
1 J J j=1
< J=

Z j+1/2¢541/2(7)  PT _ Y,Z,UV,W) V-1 =r YdU/dr + mV + kW)

_ L re (Tj: Tj‘l'l)
where  €;41/ 2(r) = { 0 otherwise

Then, the bilinear form readsAZ = b with (6N, + 1) band matrix



Test : m=1 Internal Kink Mode (1)

Let us assume rigid poloidal rotation and
chose as k=-0.2, Ar=0.2, Vedge=0.08v,

1 ———————————— 2.2 1e-05
matched solution x
global solution —/] 5 16-06
0.8 global solution
18 16-07r y_77e-30,
06¢
11.6 1e-08}
S, 4 i, |
04l 114 16-09 matched solution
¥=7.8e-3w,
11.2 1e-10
0.2¢ ' %
(VAR gp-mmmmmmmmmmmeee 1 1e-11}
0 L PO ORASSRHIIO00 0.8 1e-12 L N L N
0 010203040506070809 1 0 200 400 600 800 1000
r o, t
outer inner outer . .
region  layer region Comparison of evolution of norm.

Growth rate of matched solution agrees

well with the global one, but slightly
overestimates since matched analysis neglects
plasma inertia.

Comparison of radial displacement.
The matched solution coincides with
the global one.



Test : m=1 Internal Kink Mode (2)

0.06 — 0.06 .
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0.02} 5 1 o002 /\ 5
error 0 r't error 0 DL______f
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Error between matched solution and global one. The outer regions are modeled by static or

generalized Newcomb equation. The error depends on the model and inner layer width.

The generalized Newcomb model reduces the error. Errors are quite small even

for inner layer width Ar=0.15 for generalized Newcomb model. The error in inside

outer region is larger than outside one since magnetic shear is weak there.

The error is asymmetric with respect to the singular surface, which is shifted from the

original resonant surface due to plasma rotation.



Development of 2D Code without
Rotation (RWMaC) (2)

* RWMacC i1s benchmarked against NMA
(Normal Mode Approach) code by studying

the Solov’ev equilibrium
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Development of 2D Code without
Rotation (RWMaC) (3)

e toroidal mode n=1

e Wall position parameter b := wall radius / plasma radius=1.1

Eddy current induced by

Eigenfunction in the plasma region unstable RWM on the resistive shell
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