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Current Profile Control: Why?

“* A key goal In control of an advanced tokamak discharge is to maintain
current and pressure profiles that are compatible with both MHD stability at
high plasma pressure and a high fraction of the self-generated bootstrap
current — Steady-state operation.

¢ Simultaneous real-time control of the current and pressure profiles can lead

to the steady-state sustainment of an internal transport barrier (ITB) —
Confinement improvement .

¢ Global current profile control, eventually combined with pressure profile
control, could be an effective mechanism for neoclassical tearing mode
(NTM) control and avoidance.
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Current Profile Control: Model

/4 poloidal magnetic flux

Magnetic diffusion equation: I(¢) total plasma current
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Current Profile Control: Approach

K/

% One unique feature of the problem of current profile control in tokamaks
Is that it allows for interior, boundary and diffusivity control
mechanisms. These three types of control are functions of three physical
actuators:

i. Line-averaged density. Radio Frequency Heating

ii. Non-inductive  current  drive
power. Simplified models for
current drives (neutral beams and
RF current drives) can be derived
from more complex codes.

iii. Total plasma current.

------- - Ohmic Heating

%ﬁa’l Beam Injection

»* Modeling of additional non-inductive current drives such as bootstrap
current may be necessary depending on the phase of the discharge.

» Real-time measurement of the current density profile by Motional Stark
Effect (MSE) is available for feedback control implementation.
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Profile Control: Important Issues

Motivation:

The development of profile controllers is aimed at saving long trial-and-error
periods of time currently spent by fusion experimentalists trying to manually
adjust the time evolutions of the actuators to achieve a desired profile.

The high dimensionality of the problem and the strong coupling between the
different variables describing the plasma profile evolution call for a model-
based, multivariable approach to obtain improved closed-loop performance.

Model for Control Design:

The goal is to develop a model based controller to be used toward the
achievement of desirable profiles. A necessary prior task is the development
of a dynamic model to use for controller design.

I\/Iodellng and Control Challenges:
% Coupling of the controlled variable with kinetic variables.

 The controlled-variable PDE equation is accompanied by transport PDE
equations for the Kinetic variables.

% High dimensionality of the problem.

« Model reduction (PDE — ODE) may be necessary. Particularly for
closed-loop control.

» Unknown parameters in transport models.

Model identification may be necessary.
| LEHIGH
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Profile Control: Modeling Approaches

Open-loop Control

1. The controlled-variable PDE equation is accompanied by transport
PDE equations for the kinetic variables.

2. Time-scale separation through singular perturbation methods may be
possible: PDE system — PDE equation (magnetic variables) +
algebraic equations (kinetic variables).

3. The magnetic-variable PDE equation is accompanied by simplified,
scenario-oriented, models for the Kkinetic variables (algebraic
equations).

Closed-loop Control «» Model reduction (PDE — ODE) may be necessary
4. The controlled-variable PDE equation is evaluated with real-time

measurements of the Kinetic variables (measurable disturbances).
This approach defines a different control problem: Easier? Better?




Profile Control: Objective

The phases of the discharge define the modeling and control objectives.
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Current Profile Control: Phase I

Open-loop Finite-time Optimal Control

GOAL: During “Phase I” an optimal control problem must be
solved, where time evolution for three actuators
(@), 7(t) (u ), P (t)) are sought to minimize the functional.
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Current Profile Control: Phase I

The physical ranges for 1(7), 7(¢)and P, (¢), are given by

n\t
O g[(t) glmax ](MA) <:’I/_l(§19) QI(MA) Pmin <})tot (t) <Pmax
di(z)
el dn\t
dt gd]max dnmin < ’leg) <dnmax

To accurately reproduce experimental discharges, we must add constraints for /(z)
and 7(z), at the initial time of “Phase 17, i.e.,

I(t=0s)=1,
n(t = 0s) = n
In addition, a value of the total current /(z) is prescribed for the flattop phase, i.e.,

[(t>T)=1

target
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Current Profile Control: Phase I — Open Loop

1 Average density ~ Parameterization

U, O- Repetitive simulation of PDE
\/ Cost functional checking
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Current Profile Control: Phase I — Open-loop

= The vector parameter ¢ has 10 components

7(0.45),1(0.85),
P (0s), P (0.4s), P (0.8s), P (1.2s),

tot tot tot tot

_ﬁ(o.ss),ﬁ(o.6s),ﬁ(o.9s),ﬁ(1.2s)

O =

A

= By taking into account that 7(0s)=1, and /(7’)=/,, and using curve fitting for
the points I(0s), 1(0.4s), 1(0.8s), I(T;=1.2s), we can reconstruct the profile /(¢) for
te[0,7,]. In addition, we make /(¢)=1,,. for te[T,,T,=2.4s].

arget

= Following similar procedure, we can construct the law for P,,(¢) and 7(z).

tot

= The reconstructed control laws are in turn fed into the PDE model. Given
initial 1, the PDE system is integrated to obtain y(p,7), and finallyz(p,¢), which
are necessary to evaluate the cost function
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Current Profile Control: Phase I — Open-loop

The magnetic-variable PDE equation is poloidal magnetic flux
accompanied by simplified, scenario-

oriented, models for the kinetic variables I(¢) total plasma current
(algebraic equations).

Magnetic diffusion equation:
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Ot p2E) p op op ’ “\ B
Boundary conditions: 4_Z | | | .
a ar " H
7l =0 ;
ap ,5:0 025+
0 R S
i 2K % [ 1) SO
Pl 27 G| H| T T
p=1 p=1 '

IIIIIIIIII



Current Profile Control: Phase I —- Open-loop

Highly simplified models for the density and _=* ‘ —
temperature are chosen for the inductive phase
(Phase ). The profiles are assumed to remain
fixed. The temperature and density responses to
the actuators are simply scalar multiples of the =
reference profiles. These reference profiles are 3
taken from a DIII-D tokamak discharge. =

w
T

le -profile 5 2
[KeV], JNI[@r [10°A/m°]
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Bootstrap current is neglected. 002 o4 e o8 1
Density: Temperature:
1)\ P
(p,t)= n (B, (1) . (5.1) = k, T () L ()
(1)
(1) = §n(p,t)dp (5.1)= KaZa
Tslz(p )

i B 1/2 5/4
parallel Current; 4 3) _ K, ree(p) 0 Ea )

B¢10 par NIpar ’/_l(t)3/2

We consider 1(¢), n(z) and P (¢) the physical actuators of the system.
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Current Profile Control: Phase I — Open-loop
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Current Profile Control: Phase I — Open-loop
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Current Profile Control: Phase I — Open-loop

Case 1: Experiment June 23, 2008

-----
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Figure: Comparison of desired and actual
| LEHIGH actuators for shot 133593 (Case 1).
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Current Profile Control: Phase I — Open-loop
Case 2: Experiment June 23, 2008
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Figure: Comparison of desired and actual
| LEHIGH actuators for shot 133590 (Case 2).
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Current Profile Control: Phase I — Open-loop
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Figure: Initial ¢ profile used in case 1 Figure: Initial ¢ profile used in case 2

The figures illustrate initial conditions of safety factor g profiles for shots
133593 (Case 1) and 133590 (Case 2) at 500ms, where the initial profiles of
shots 129400 and 133584 at 500 ms (green-dotted curves) were used offline for
the synthesis of the ESOC actuator trajectories.
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Current Profile Control: Phase I — Open-loop

9

T

= Experiment = Experiment
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e Simplified model with predicted actuators e Simplified model with predicted actuators
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Comparisons of the ¢ profiles at time T=1,700 ms are illustrated in these figures,
where the black curves are the target profiles, the blue curves represent the
experimental results, the green curves illustrate the ¢ profile achieved using the
simplified model with experimental initial conditions and actuator trajectories, and
the red curves depict the g profiles achieved using the simplified model with
initial conditions of shot 129400 (case 1) and 133584 (case 2) and actuator
trajectories predicted by the ESOC procedure.
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Current Profile Control: Phase I — Open-loop
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Current Profile Control: Phase I — Open-loop

The controlled-variable PDE equation is accompanied
by transport PDE equations for the kinetic variables.

Open-loop design admits the
use of highly complex
models

Integration of CORSICA
into MATLAB SIMULINK
environment

Optimizer




for three actuators (

Current Profile Control: Phase I

Closed-loop Finite-time Optimal Control

GOAL: Identical to open-loop control. During “Phase |7 an
optimal control problem must be solved, where time evolution

1(t), 7(e) lu, @), P, ()

) are sought to

minimize the functional. Closed-loop control is expected to be

more effective in dealing with model and IC uncertainties, and
measurement noise.

J . =

min

where

J(t)=

O'-—-.H

min ((¢))

t

((p)-"(p))

N

dp
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Current Profile Control: Phase I — Closed-loop

Receding-horizon closed-loop control = Based on measurements obtained at time
t, the controller uses the dynamic model to
predict the future dynamic behavior of the
system over a prediction horizon 7, and
determines the input such that a
predetermined open loop performance
objective functional is optimized subject
to the system dynamics, and input and
state costraints.

= |n order to incorporate some feedback

P Open-loop input mechanism to compensate for disturbances

------ and model-plant mismatch, the open-loop

e manipulated input function obtained is

A

Past | Future Predictions

Predicted state

Closed-igdi) input

| ; implemented only until the next
t 1+o 1, measurement becomes available. The
recalculation/measurement takes place

Prediction horizon 7, ) ) . .
every o sampling time-units. Using the

new measurement at time 7+9, the entire

procedure (prediction and optimization) is

repeated to find a new input function with
LEHIGH the prediction horizon moving forward.
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Current Profile Control: Phase I — Closed-loop

f(r)

PDE i(x0) Cost
Model | Function
\

Physical Extremum
Systems Actuator update Seeking

A

Disturbance

A

A

Receding-horizon closed-loop control scheme

This figure shows a closed-loop, receding-horizon, optimal controller based on
an extremum-seeking optimization framework.

Limitation: Computational demand
| LEHIGH
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Current Profile Control: Phase I — Closed-loop

1. Select the tolerance &>0 and the maximum number of iterations for the
extremum seeking control algorithm.

2. Define ¢=t,. Provide the off-line actuator trajectories u(z), for t > ¢=t,, and
the actual initial poloidal flux profile yrz,) to the PDE model.

3. Compute the predicted ¢7) (control target) from the output sequence y/?), for
t > t, obtained from the PDE model.

4. Calculate the cost function. If it is less than &, go to step 6.

5. Adjust the parameters 6 ( or u(t)) of the extremum seeking algorithm, until
the cost function is less than ¢ or the maximum number of iteration is reached.

6. Implement the calculated actuator trajectories on the actual system for [z, + A,
t, + 2A1].

7. Move the control horizon one sampling interval At ahead, measure the output
of the actual system yt, + At), make ¢, _¢, + At, and go to step 3.




Model Reduction

0 oy ©0°
y f(y1 y; )2/)20

ot or Or

Infinite-dimensional model (weak form) + Galerkin Projection:

@/ = r ay 82 r
y¢ ()L ar= yqﬁ( )f(y, % jd

assuming y(t,r) = lZaj (l‘)¢j (7)

j=1

-

Finite-dimensional model (low dimensional):

d
§+g(z t)zO Z:[al,---,al]T




Model Reduction

We seek reduced-order solutions

W)= 2,04, (r)

= Finite Element Method uses piecewise linear functions

= Pseudo-spectral Method uses orthogonal polynomials, e.g., Chebyshev

EEEEE V




Model Reduction

Data ensembile

Data: v = span l,...,yn}ERm

m . points in space
n . pointsin time

Orthonormal basis:

d

{¢k}Z=1’ d =dimo < Y= Z(yj’¢k)¢k’ Jj=1...,n

k=1

Objective: Choose / out of this d eigenfunctions such that
2
The solution of this

- 1 n /
min = - . S
{¢k};lnjzjyf E)(yf ¢")¢" problem is giving by

: . —  the Proper Orthogonal
t\g,0.)=0.,149H,15] <. ..
> (¢’ ¢f) v /< Decomposition (POD)

T

=y y theory

where H y‘




Model Reduction

)
, y(t,r) = 2, (g, (r)
ot or or’ a0
Numerical methods
FD/FE/SMSs)

POD-mode extraction N

> |

Data reconstruction 0 E

space
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Current Profile Control: ROM Control

@ _ 10 3 ¥ 9

g =A@ G 0h0) ) L@, =05] =u)
_n AP _7

Infinite-dimensional model (weak form): = P U _T’u3 =

1 1 1 0
(1) 2 =, ()0 ) D)

1
+ by (r) £, (r)uy (r)dr
/
assuming y(t,7r) = ‘2106 .(t)l,Uj (7)
j=
Finite-dimensional model (low dimensional):
do " " "
ME = Ao+ Aou,(t) + bu, (t) + cu,(¢) b, = w1, =u,, iy = uu,

! LEHIGH
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Current Profile Control: ROM Control

Generalization of finite-dimensional model (low dimensional):
y=Ay+ Kyup (1) + Fu,(t)
Cost function:
_ 1 1 ¢
ming =07 5ok, )+ 5 000+ bt @+ rc (O

Hamiltonian + Optimality conditions:

1 1 1
H(_)/,M],MD,p)ZEyTQy'l'EVIM? +§VDM12) +pT(Ay+KyuD +Fu[)

ad add
—=0=u, = -r['lFTp,— =0=u, = -rl')l(Ky)Tp

a, at ),
y= e Ay-Kyr (&) p-FrF" p, yli,) = v,

. a{ -
p= 5" -Qy-A"p +KTprD1(Ky)Tp,p(tf)= Sy(ff)
| LEHIGH
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Current Profile Control: ROM Control

Quasilinearization of optimality condition:

PO = gy D) ) G k) (fo): Vs
HED = Oy L 4T D) ) (e (tf): Sy (tf)
H® = rl;l(Ky(k) )Tp(k)KTp(k)
V=Fr'F" =V"
GN = Ky®pA(gy® ) p®

Solution: ~ p¥™ = Py 44 pr = p

P=-P4-A"P+PVP-Q,Pli,)=5
q-(k+1) — _(A_VP)Tq(kﬂ) _I_PG(k) +H(k)’q(k+1) (tf)

| LEHIGH
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Current Profile Control: ROM Control

Closed-loop system:

J-/(k+1) — (A _ VP)y(k+1) ) Vq(k+l) ) G(k) | y(k+1) (to) =y,

Optimal Control: u, (1) = -r]'lFT (Py + q*)
up (1) = -1, (Ky) (Py+47)

limg® =¢

k—co

Convergence:  « Construction of a contraction mapping
* Fixed point theorem in Banach space

Caveat:  The closed-loop control solution still depends on the IC
A receding horizon control scheme is still necessary

| LEHIGH

IIIIIIIIII



Current Profile Control: CL-POD-SLQ-RH

() ——| 2
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/

Disturbance

Physical
Systems
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/
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l
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Y

—
-

Actuator update

Cost
Function

SLQ Optimal Control

v 7

—
-

Extr m
ing

Receding-horizon closed-loop control ﬁeme

This figure shows a closed-loop, receding-horizon, optimal controller based on a proper-

orthogonal-decomposition

(POD)

sequential-linear-quadratic  (SLQ) optimization

“framework.
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Profile Control: Objective

The phases of the discharge define the modeling and control objectives.

15 During “Phase I” the control goal
Lar PHASE | puAasell | 1S to drive the current/rotation
1.3 . = profile from any arbitrary initial

12 - = : - condition to a prescribed target

=11 ' * | profile at some time T e (7,,T,) in

€ the flat-top phase of the total

E 7 RAMP-UP PHASE= FLAT-TOP PHASE current ](l‘) evolution. The

3 prescribed target profile i1s not an

equilibrium profile during “Phase I.”
] — current \ |
0-5 560 10‘00 15‘00 20‘00 250
Time [msec]

“Phase I” — Mainly inductive
“Phase II”” — Mainly non-inductive (Stronger magnetic/kinetic coupling)




Current Profile Control: Phase 11

Regulation Control

GOAL: During “Phase II” a regulation control problem must be
solved, where time evolution for three actuators
(), 7(t) (1), P (¢)) are sought to regulate the profile around
a desired profile.

First-principles Approach » Data-based Approach




Current Profile Modeling: Identification I

. 0
Model: a_);:v(D(vy,y)Vy)+ S(r,t)

We are interested in identifying the unknown coefficient D(-) based on known
expetimental data y and Vy

min.J =y —y[+[Vy-Vvy|

D(")
Nonlinear structure of the transport coetficient:

* Known from first principles
* Identified from data — Nonlinear regression

Assume (just an example): D(Vy, y) =D,(r)+D,(r)Vy+D,(r)y

POD: G_y = V(D(Vy, y)Vy)Jr S(r, t) » % = K(D)Z T L(D)”

ot dt

D is the finite-dimensional representation of Dy, Dy, D, — St"fm_dar_d System
Identification problem

! LEHIGH

IIIIIIIIII



Reduced Order Model for PDE Control

Optimizer - Data Analysis

| oD |
Extraction

Cocfficient

[dentification

Adaptive Low Dimensional
Dynamical System (LDDS)
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Current Profile Modeling: Identification II

Model: Unknown.

We are interested in identifying the whole realization

x = Ax+ Bu Subspace Identification
y = Cx + Du problem

Database

Total power qo

Identification .
Total current gmin

Model

Average density q95




Current Profile Modeling: Identification II

In general, the following linear model with unknown system matrices is used
to model the input-output response obtained from diagnostics

x[k +1] = Ax[kj + Bu[k} y[k} = Cx[k}+Du[k}

The solution of the linear model can be obtained by recursive computation of
the system equation with zero initial value:

xk|= %ﬂ' “LBufk—i) y{k|= 'gchi “LBu(k—iy+ Duk)
1= 1=

Impulse response: Let #(0)=1 and u(k)=0, k>0, the response sequence is then
given by y(0) = D, y(1) = CB, y(2) = CAB, ..., y(k) =CA*'B

Markov parameters are defined as Y, =y(0) =D, Y, =y(1) = CB, ¥, = y(2) =
CAB, ..., Y, = y(k) = CA*'B, which characterize the system dynamics of the
linear model.

We note D =Y,, then a realization can be obtained by the computation of a
triplet {4, B, C} from the Markov parameters Y, , ..., Y, (the diagnostics of
the impulse excitation experiment).

| LEHIGH
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Current Profile Control: Identification 11

####

dstdenp/3.318a3 133583
135585

smooth(nebar_rd

- Input
excitation for
s — : : 1 3 - 7 system
e : Identification
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Current Profile Control: Identification 11

Case 2:

3007

Input

dstdenp /3.31823 1 30

111111

system
identification
experiment

DDDDD

ip 1335490
iptipp 123580

brmipower 133530
th[pinj, 200 1 T M8
[/

L

i| == A A
| Ll T
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Current Profile Modeling: Identification II

; —Average density| |
44 -—-Total power
—Total current

External Inputs
Safety factor

Safety factor in discharge 133590

Actuator trajectories in discharge 133590
(grmin 1S SIMilar to gq,)

Inputs Outputs




Current Profile Modeling: Identification II

Measured Output and Simulated Model Output
1 I I

== \easured Output
= [ stimate: 73.49%

|
0 50 100 150
Sampling index

4.6

4.4 === \easured Output _
= [ stimate: 84.23%

Sampling index
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Reduced Order Model for PDE Control

Feedforward
Signals

Reference
Signals

Offline Priori

Design
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Current Profile Control: Conclusions

= Demonstrated existence of model-based solutions to the problem of defining actuator
trajectories that achieve desired profiles during ramp-up (inductive) phase.

= Overall control combines open-loop + closed-loop optimal controllers.
= Open-loop control design admits highly complex models
= Closed-loop control design requires simplified reduced-ordered models

This strategy is being extended to the non-inductive phase of the discharge.

= Incorporation of predictive codes (CORSICA) for model/controller design/validation
= CORSICA in the loop for open-loop control design (ES, NLP)

= Simplified scenario-oriented model development and validation
= Absolutely necessary for closed-loop control
= The simpler the model, the faster the convergence for open-loop control

= Reduced order modeling
= Necessary for closed-loop control (Bilinear Opt. Cont., Receding Hor. Cont.)
= Useful for open-loop control design (ES, NLP)

= Data-driven reduced-order modeling as an alternative to first-principle
= Black-box approach.
= Gray-box approach.
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