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Current Profile Control: Why?Current Profile Control: Why?

A key goal in control of an advanced tokamak discharge is to maintain 
current and pressure profiles that are compatible with both MHD stability at 
high plasma pressure and a high fraction of the self-generated bootstrap 
current → Steady-state operation.

Simultaneous real-time control of the current and pressure profiles can lead 
to the steady-state sustainment of an internal transport barrier (ITB) →
Confinement improvement .

Global current profile control, eventually combined with pressure profile 
control, could be an effective mechanism for neoclassical tearing mode 
(NTM) control and avoidance. 
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Magnetic diffusion equation:

Boundary conditions:

)(tI
ψ poloidal magnetic flux

total plasma current

Current Profile Control: ModelCurrent Profile Control: Model
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Current Profile Control: ApproachCurrent Profile Control: Approach
One unique feature of the problem of current profile control in tokamaks 
is that it allows for interior, boundary and diffusivity control 
mechanisms. These three types of control are functions of three physical 
actuators: 

One unique feature of the problem of current profile control in tokamaks 
is that it allows for interior, boundary and diffusivity control 
mechanisms. These three types of control are functions of three physical 
actuators: 
i. Line-averaged density. 
ii. Non-inductive current drive 

power. Simplified models for 
current drives (neutral beams and 
RF current drives) can be derived 
from more complex codes.

iii. Total plasma current.

i. Line-averaged density. 
ii. Non-inductive current drive 

power. Simplified models for 
current drives (neutral beams and 
RF current drives) can be derived 
from more complex codes.

iii. Total plasma current.

Modeling of additional non-inductive current drives such as bootstrap 
current may be necessary depending on the phase of the discharge. 

Real-time measurement of the current density profile by Motional Stark 
Effect (MSE) is available for feedback control implementation.

Modeling of additional non-inductive current drives such as bootstrap 
current may be necessary depending on the phase of the discharge. 

Real-time measurement of the current density profile by Motional Stark 
Effect (MSE) is available for feedback control implementation.
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The development of profile controllers is aimed at saving long trial-and-error 
periods of time currently spent by fusion experimentalists trying to manually 
adjust the time evolutions of the actuators to achieve a desired profile.

The high dimensionality of the problem and the strong coupling between the 
different variables describing the plasma profile evolution call for a model-
based, multivariable approach to obtain improved closed-loop performance.

The development of profile controllers is aimed at saving long trial-and-error 
periods of time currently spent by fusion experimentalists trying to manually 
adjust the time evolutions of the actuators to achieve a desired profile.

The high dimensionality of the problem and the strong coupling between the 
different variables describing the plasma profile evolution call for a model-
based, multivariable approach to obtain improved closed-loop performance.

Profile Control: Important IssuesProfile Control: Important Issues

The goal is to develop a model based controller to be used toward the 
achievement of desirable profiles. A necessary prior task is the development 
of a dynamic model to use for controller design. 

The goal is to develop a model based controller to be used toward the 
achievement of desirable profiles. A necessary prior task is the development 
of a dynamic model to use for controller design. 

Coupling of the controlled variable with kinetic variables.
• The controlled-variable PDE equation is accompanied by transport PDE 

equations for the kinetic variables. 
High dimensionality of the problem.

• Model reduction (PDE → ODE) may be necessary. Particularly for 
closed-loop control.
Unknown parameters in transport models.

• Model identification may be necessary.

Modeling and Control Challenges:Modeling and Control Challenges:

Model for Control Design:Model for Control Design:

Motivation:Motivation:
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Profile Control: Modeling ApproachesProfile Control: Modeling Approaches

1. The controlled-variable PDE equation is accompanied by transport 
PDE equations for the kinetic variables. 

2. Time-scale separation through singular perturbation methods may be 
possible: PDE system → PDE equation (magnetic variables) + 
algebraic equations (kinetic variables).

3. The magnetic-variable PDE equation is accompanied by simplified, 
scenario-oriented, models for the kinetic variables (algebraic 
equations).

4. The controlled-variable PDE equation is evaluated with real-time 
measurements of the kinetic variables (measurable disturbances).

This approach defines a different control problem: Easier? Better?

Closed-loop Control ↔ Model reduction (PDE → ODE) may be necessary

Open-loop Control
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During “Phase I” the control goal 
is to drive the current/rotation 
profile from any arbitrary initial 
condition to a prescribed target 
profile at some time T ∈ (T1,T2) in 
the flat-top phase of the total 
current I(t) evolution. The 
prescribed target profile is not an 
equilibrium profile during “Phase I.”

During “Phase II” the control goal 
is to regulate the current/rotation 
profile around a target equilibrium  
profile. 

Profile Control: ObjectiveProfile Control: Objective
The phases of the discharge define the modeling and control objectives.The phases of the discharge define the modeling and control objectives.

“Phase I”
“Phase II”
“Phase I”
“Phase II”

→ Mainly inductive
→ Mainly non-inductive (Stronger  magnetic/kinetic coupling)
→ Mainly inductive
→ Mainly non-inductive (Stronger  magnetic/kinetic coupling)
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Current Profile Control: Phase ICurrent Profile Control: Phase I
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OpenOpen--loop Finiteloop Finite--time Optimal Controltime Optimal Control

where

GOAL: During “Phase I” an optimal control problem must be 
solved, where time evolution for three actuators 
(                                         ) are sought to minimize the functional. 

GOAL: During “Phase I” an optimal control problem must be 
solved, where time evolution for three actuators 
(                                         ) are sought to minimize the functional. ( ) ( )( ) )(  ,    ),( tPtutntI totn
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The physical ranges for I(t),          and           , are given by
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To accurately reproduce experimental discharges, we must add constraints for I(t) 
and         , at the initial time of “Phase I”, i.e.,
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In addition, a value of the total current I(t) is prescribed for the flattop phase, i.e.,

( ) ettITtI arg1 =≥

Current Profile Control: Phase ICurrent Profile Control: Phase I
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Current Profile Control: Phase I Current Profile Control: Phase I –– Open LoopOpen Loop

nn σμ ,

Parameterization 
Repetitive simulation of PDE
Cost functional checking
Parameter modification

Trajectory in parameter space

FDM

FEM

SM

PDE

Average density

Total Current

Total Power

Time
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The vector parameter θ has 10 componentsThe vector parameter θ has 10 components
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Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop

Following similar procedure,  we can construct the law for     and          .

The reconstructed control laws are in turn fed into the PDE model. Given 
initial ψ, the PDE system is integrated to obtain             ,  and finally          , which 
are necessary to evaluate the cost function            

Following similar procedure,  we can construct the law for     and          .

The reconstructed control laws are in turn fed into the PDE model. Given 
initial ψ, the PDE system is integrated to obtain             ,  and finally          , which 
are necessary to evaluate the cost function            

( )tPtot

( )t,ρ̂ψ

( )tn

( )t,ρ̂ι

By taking into account that  I(0s)=I0 and I(T1)=Itarget, and using curve fitting for 
the points I(0s), I(0.4s), I(0.8s), I(T1=1.2s), we can reconstruct the profile I(t) for 
t∈[0,T1]. In addition, we make I(t)=Itarget for t∈[T1,T2=2.4s].

By taking into account that  I(0s)=I0 and I(T1)=Itarget, and using curve fitting for 
the points I(0s), I(0.4s), I(0.8s), I(T1=1.2s), we can reconstruct the profile I(t) for 
t∈[0,T1]. In addition, we make I(t)=Itarget for t∈[T1,T2=2.4s].
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Magnetic diffusion equation:

Boundary conditions:

)(tI
ψ poloidal magnetic flux

total plasma current
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Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop
The magnetic-variable PDE equation is 
accompanied by simplified, scenario-
oriented, models for the kinetic variables 
(algebraic equations).
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Density: Temperature:

Parallel Current:

Highly simplified models for the density and 
temperature are chosen for the inductive phase 
(Phase I). The profiles are assumed to remain 
fixed. The temperature and density responses to 
the actuators are simply scalar multiples of the 
reference profiles. These reference profiles are 
taken from a DIII-D tokamak discharge. 
Bootstrap current is neglected.
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e
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We consider         ,        and           the physical actuators of the system.)(tPtot)(tI )(tn

Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop
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Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop
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reversed shear 
target profile

monotonic target 
profile with near zero 

shear near axis

monotonic target 
profile with positive 

shear near axis
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Case 1: Experiment June 23, 2008

Figure:  Comparison of desired and actual 
actuators for shot 133593 (Case 1).

Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop
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Case 2: Experiment June 23, 2008

Figure:  Comparison of desired and actual 
actuators for shot 133590 (Case 2).

Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop



LEHIGH
U  N  I  V  E  R  S  I  T  Y

Figure: Initial q profile used in case 1 Figure: Initial q profile used in case 2
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The figures illustrate initial conditions of safety factor q profiles for shots 
133593 (Case 1) and 133590 (Case 2) at 500ms, where the initial profiles of 
shots 129400 and 133584 at 500 ms (green-dotted curves) were used offline for 
the synthesis of the ESOC actuator trajectories.

Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop
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Comparisons of the q profiles at time T=1,700 ms are illustrated in these figures, 
where the black curves are the target profiles, the blue curves represent the 
experimental results, the green curves illustrate the q profile achieved using the 
simplified model with experimental initial conditions and actuator trajectories, and 
the red curves depict the q profiles achieved using the simplified model with 
initial conditions of shot 129400 (case 1) and 133584 (case 2) and actuator 
trajectories predicted by the ESOC procedure. 

Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop
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Figure: Comparison of q profile in Case 1 Figure: Comparison of q profiles in Case 2
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Optimizer

CORSICA

Open-loop design admits the 
use of highly complex 
models

Integration of CORSICA 
into MATLAB SIMULINK 
environment

The controlled-variable PDE equation is accompanied 
by transport PDE equations for the kinetic variables. 

Current Profile Control: Phase I Current Profile Control: Phase I –– OpenOpen--looploop
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GOAL: Identical to open-loop control. During “Phase I” an 
optimal control problem must be solved, where time evolution 
for three actuators (                                     ) are sought to 
minimize the functional. Closed-loop control is expected to be 
more effective in dealing with model and IC uncertainties, and 
measurement noise.

GOAL: Identical to open-loop control. During “Phase I” an 
optimal control problem must be solved, where time evolution 
for three actuators (                                     ) are sought to 
minimize the functional. Closed-loop control is expected to be 
more effective in dealing with model and IC uncertainties, and 
measurement noise.
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Current Profile Control: Phase I Current Profile Control: Phase I –– ClosedClosed--loop loop 
Receding-horizon closed-loop control Based on measurements obtained at time 

t, the controller uses the dynamic model to 
predict the future dynamic behavior of the 
system over a prediction horizon Tp, and 
determines the input such that a 
predetermined open loop performance 
objective functional is optimized subject 
to the system dynamics, and input and 
state costraints. 
In order to incorporate some feedback 
mechanism to compensate for disturbances 
and  model-plant mismatch, the open-loop 
manipulated input function obtained is 
implemented only until the next 
measurement becomes available. The 
recalculation/measurement takes place 
every δ sampling time-units. Using the 
new measurement at time t+δ, the entire 
procedure (prediction and optimization) is 
repeated to find a new input function with 
the prediction horizon moving forward.
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Receding-horizon closed-loop  control scheme

This figure shows a closed-loop, receding-horizon, optimal controller based on 
an extremum-seeking optimization framework.
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Current Profile Control: Phase I Current Profile Control: Phase I –– ClosedClosed--loop loop 

Limitation: Computational demand
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1. Select the tolerance ε>0 and the maximum number of iterations for the 
extremum seeking control algorithm.

2. Define ti=t0. Provide the off-line actuator trajectories u(t), for t >  ti=t0, and 
the actual initial poloidal flux profile ψ(t0) to the PDE model.

3. Compute the predicted ι(T) (control target) from the output sequence ψ(t), for 
t > ti, obtained from the PDE model.

4. Calculate the cost function. If it is less than ε, go to step 6.
5. Adjust the  parameters θ ( or u(t)) of the extremum seeking algorithm, until  

the  cost function is less than ε or the maximum number of iteration is reached.
6. Implement the calculated actuator trajectories on the actual system for [ti + Δt,

ti + 2Δt].
7. Move the control horizon one sampling interval Δt ahead, measure the output 

of the actual system ψ(ti + Δt), make ti = ti + Δt, and go to step 3.

1. Select the tolerance ε>0 and the maximum number of iterations for the 
extremum seeking control algorithm.

2. Define ti=t0. Provide the off-line actuator trajectories u(t), for t >  ti=t0, and 
the actual initial poloidal flux profile ψ(t0) to the PDE model.

3. Compute the predicted ι(T) (control target) from the output sequence ψ(t), for 
t > ti, obtained from the PDE model.

4. Calculate the cost function. If it is less than ε, go to step 6.
5. Adjust the  parameters θ ( or u(t)) of the extremum seeking algorithm, until  

the  cost function is less than ε or the maximum number of iteration is reached.
6. Implement the calculated actuator trajectories on the actual system for [ti + Δt,

ti + 2Δt].
7. Move the control horizon one sampling interval Δt ahead, measure the output 

of the actual system ψ(ti + Δt), make ti = ti + Δt, and go to step 3.

Current Profile Control: Phase I Current Profile Control: Phase I –– ClosedClosed--loop loop 
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Model ReductionModel Reduction

Finite Element Method uses  piecewise linear functions

Pseudo-spectral Method uses  orthogonal polynomials, e.g., Chebyshev

Which are the optimal basis functions?  

We seek reduced-order solutions
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Model ReductionModel Reduction

Orthonormal basis:
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Model ReductionModel Reduction

Numerical methods
(FD/FE/SMs)
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Infinite-dimensional model (weak form):

Finite-dimensional model (low dimensional):
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Current Profile Control: ROM ControlCurrent Profile Control: ROM Control
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Generalization of finite-dimensional model (low dimensional):

Current Profile Control: ROM ControlCurrent Profile Control: ROM Control
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Quasilinearization of optimality condition:

PPqPyp Tkkk =,+= )1+()1+()1+(Solution:

Current Profile Control: ROM ControlCurrent Profile Control: ROM Control
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Closed-loop system:
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( ) ( ) ( )*1-
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DD
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IIOptimal Control:

Current Profile Control: ROM ControlCurrent Profile Control: ROM Control

Convergence: • Construction of a contraction mapping
• Fixed point theorem in Banach space

( ) ( ) ( ) ( ) ( ) ( ) ( ) 00
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∞→
=lim qq k
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Caveat: • The closed-loop control solution still depends on the IC
• A receding horizon control scheme is still necessary
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Receding-horizon closed-loop  control scheme

This figure shows a closed-loop, receding-horizon, optimal controller based on a proper-
orthogonal-decomposition (POD)  sequential-linear-quadratic (SLQ) optimization 
framework.
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RAMP−UP PHASE FLAT−TOP PHASE 

During “Phase I” the control goal 
is to drive the current/rotation 
profile from any arbitrary initial 
condition to a prescribed target 
profile at some time T ∈ (T1,T2) in 
the flat-top phase of the total 
current I(t) evolution. The 
prescribed target profile is not an 
equilibrium profile during “Phase I.”

During “Phase II” the control goal 
is to regulate the current/rotation 
profile around a desired 
equilibrium profile. 

Profile Control: ObjectiveProfile Control: Objective
The phases of the discharge define the modeling and control objectives.The phases of the discharge define the modeling and control objectives.

“Phase I”
“Phase II”
“Phase I”
“Phase II”

→ Mainly inductive
→ Mainly non-inductive (Stronger  magnetic/kinetic coupling)
→ Mainly inductive
→ Mainly non-inductive (Stronger  magnetic/kinetic coupling)
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GOAL: During “Phase II” a regulation control problem must be 
solved, where time evolution for three actuators 
(                                        ) are sought to regulate the profile around 
a desired profile.  

GOAL: During “Phase II” a regulation control problem must be 
solved, where time evolution for three actuators 
(                                        ) are sought to regulate the profile around 
a desired profile.  

( ) ( )( ) )(  ,    ),( tPtutntI totn

Current Profile Control: Phase IICurrent Profile Control: Phase II

Regulation ControlRegulation Control

First-principles Approach Data-based Approach
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Current Profile Modeling: Identification ICurrent Profile Modeling: Identification I

( )( ) ( )trSyyyD
t
y ,, +∇∇∇=
∂
∂Model:

We are interested in identifying the unknown coefficient D(⋅) based on known 
experimental data       and   

yyyyJ
D

~~min
)(

∇−∇+−=
⋅

y~ y~∇

Nonlinear structure of the transport coefficient:

• Known from first principles
• Identified from data → Nonlinear regression

Assume (just an example): ( ) yrDyrDrDyyD )()()(, 210 +∇+=∇

POD: ( )( ) ( )trSyyyD
t
y ,, +∇∇∇=
∂
∂ ( ) ( )uDLZDK

dt
dz

+=

D is the finite-dimensional representation of D0, D1, D2 → Standard System 
Identification problem
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Reduced Order Model for PDE ControlReduced Order Model for PDE Control
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Current Profile Modeling: Identification IICurrent Profile Modeling: Identification II

Model:

We are interested in identifying the whole realization

DuCxy
BuAxx

+=
+=& Subspace Identification 

problem

Unknown.
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Current Profile Modeling: Identification IICurrent Profile Modeling: Identification II
In general, the following linear model with unknown system matrices is used 
to model the input-output response obtained from diagnostics

The solution of the linear model can be obtained by recursive computation of 
the system equation with zero initial value:

Impulse response: Let u(0)=1 and u(k)=0, k>0, the response sequence is then 
given by y(0) = D, y(1) = CB, y(2) = CAB, …, y(k) =CAk-1B

Markov parameters are defined as Y0 = y(0) = D, Y1 = y(1) = CB, Y2 = y(2) = 
CAB, …, Yk = y(k) = CAk-1B, which characterize the system dynamics of the 
linear model. 

We note D =Y0, then a realization can be obtained by the computation of a 
triplet {A, B, C} from the Markov parameters Y1 , …, Yk (the diagnostics of 
the impulse excitation experiment). 
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Current Profile Control: Identification IICurrent Profile Control: Identification II

Case 1:

Input 
excitation for 

system 
identification 
experiment
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Current Profile Control: Identification IICurrent Profile Control: Identification II

Case 2:
Input 

excitation for 
system 

identification 
experiment
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Current Profile Modeling: Identification IICurrent Profile Modeling: Identification II

Actuator trajectories in discharge 133590 Safety factor in discharge 133590 
(qmin is similar to q0)
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Current Profile Modeling: Identification IICurrent Profile Modeling: Identification II
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Reduced Order Model for PDE ControlReduced Order Model for PDE Control
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Demonstrated existence of model-based solutions to the problem of defining actuator 
trajectories that achieve desired profiles during ramp-up (inductive) phase.

Overall control combines open-loop + closed-loop optimal controllers.
Open-loop control design admits highly complex models
Closed-loop control design requires simplified reduced-ordered models 

This strategy is being extended to the non-inductive phase of the discharge.

Incorporation of predictive codes (CORSICA) for model/controller design/validation
CORSICA in the loop for open-loop control design (ES, NLP)

Simplified scenario-oriented model development and validation
Absolutely necessary for closed-loop control
The simpler the model, the faster the convergence for open-loop control

Reduced order modeling
Necessary for closed-loop control (Bilinear Opt. Cont., Receding Hor. Cont.)
Useful for open-loop control design (ES, NLP)

Data-driven reduced-order modeling as an alternative to first-principle
Black-box approach.
Gray-box approach. 

Demonstrated existence of model-based solutions to the problem of defining actuator 
trajectories that achieve desired profiles during ramp-up (inductive) phase.

Overall control combines open-loop + closed-loop optimal controllers.
Open-loop control design admits highly complex models
Closed-loop control design requires simplified reduced-ordered models 

This strategy is being extended to the non-inductive phase of the discharge.

Incorporation of predictive codes (CORSICA) for model/controller design/validation
CORSICA in the loop for open-loop control design (ES, NLP)

Simplified scenario-oriented model development and validation
Absolutely necessary for closed-loop control
The simpler the model, the faster the convergence for open-loop control

Reduced order modeling
Necessary for closed-loop control (Bilinear Opt. Cont., Receding Hor. Cont.)
Useful for open-loop control design (ES, NLP)

Data-driven reduced-order modeling as an alternative to first-principle
Black-box approach.
Gray-box approach. 

Current Profile Control: ConclusionsCurrent Profile Control: Conclusions


