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RWM at low rotation plasmas

• DIII-D /JT60U demonstrated the existence of RWM stable regime  
  in low rotation in IAEA FEC 2006

    - Challenge to theoretical understanding;
      Concept of  a critical rotation

• Assessment of RWM stability near critical rotation 
  has been explored (IAEA FEC 2008):

    - DIII-D   - ECCD-NTM suppression (IAEA 2008 EX-P9-5)
    
    - JT60U       - Scanning rotation by NBI combination
                   (IAEA 2008 - EX_5-2)
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Recent Results (IAEA 2008)

 
• Mode at low rotation at the beta collapse

    (DIII-D)   non-rotating mode is likely NTM 
     (JT60U)  RWM (External kink)without magnetic island
 
•Energetic particles destabilize the RWM
   
    (DIII-D)  2/1 fishbone-driven RWM 
    (JT60U)  Energetic particle wall mode (EWM)

--> Common Observations and Differences
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Long Duration RWM/NTM Free Operation at  βN > βN.no-wall  
Routinely Achievable with ECCD NTM  Suppression at Low Rotation 
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 • Possible NTM excitation 
  at β ~ βN.no-wall complicates RWM
 
 

 A question arises: 
  Is this non-rotating mode 
   a NTM or RWM?
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Long Duration RWM/NTM Free Operation at  βN > βN.no-wall  
Routinely Achievable with ECCD NTM  Suppression at Low Rotation 
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 • NTM excitation at β ~ βN.no-wall 
  complicates RWM
 
 – NTM threshold was observed
  to depend on plasma rotation 
  in DIII-D [R. Buttery, et al.,
  Phys. Plasmas 15, 056115 (2008).]

 – Possible NTM excitation without
  seed magnetic island
  [D. Brennan et al.., 
  Phys. Plasmas 9, 2998 (2002).]

 A question arises: 
  Is this non-rotating mode 
   a NTM or RWM?
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Insensitivity to Feedback Suggests N=1 Non-rotating Mode is NTM 
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• No Obvious Preference was Observed to Feedback Being on or off, Feedback Phase Shift

• ECCD was turned off at t=3000 ms
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Sometimes Mode Rotates, However, Mode Structure 
of Rotating / Non-rotating Modes are Identical 
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Plasma Rotation below the Previously-Reported Rotation 
Threshold was Achieved with Pre-emptive ECCD-NTM Suppression 
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• Plasma rotation profile:  ~ zero except near the edge
• Rotation at onset:  below previously reported (Garofalo, IAEA FEC in 2006) 
• Possible existence of RWM suppression mechanisms even when the plasma 
  rotation is totally absent 
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On the best discharge, the high-βN was sustained for ~5sOn the best discharge, the highOn the best discharge, the high--ββNN was sustained for ~5swas sustained for ~5s

On the best discharge, 

βN~3.0 (Cβ~0.4) was sustained by 
plasma rotation > Vt

cri.

Sustained duration is ~5s, which 
is ~3 time longer than τR.
Time duration is determined by 
the increase of βN

no-wall due to 
gradual j(r) penetration.  

According to ACCOME, fCD≥80% 
and fBS~50% were also achieved.

On the best discharge, On the best discharge, 

ββNN~3.0 (~3.0 (CCββ~0.4) was sustained by ~0.4) was sustained by 
plasma rotation > Vplasma rotation > Vtt

cricri..

Sustained duration is ~5s, which Sustained duration is ~5s, which 
is ~3 time longer than is ~3 time longer than ττRR..

Time duration is determined by Time duration is determined by 
the increase of the increase of ββNN

nono--wallwall due to due to 
gradual j(r) penetration.  gradual j(r) penetration.  

According to ACCOME, fAccording to ACCOME, fCDCD≥≥80% 80% 
and fand fBSBS~50% were also achieved.~50% were also achieved.

~5s (~3~5s (~3ττRR))

      Dr. Matsunaga: from IAEA FEC 2008 EXP/5_2
 “Dynamics and Stability of Resistive Wall Mode in the JT-60U High-βPlasmas”
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High Betan above No-wall Limit is not Automatically
Guaranteed   ( G. Matsunaga IAEA FEC 2008 EXP_5_2)  

Long Duration high betan above no-wall limit

High beta duration time period Cβ>0     (sec)
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Recent Results (IAEA 2008)
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Increase of  near-zero rotation domain near q=2
leads to onset of RWM 
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High βn Discharges with Low Rotation Pro�le
  Excites q=2 Fishbone-driven RWM   
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• Precession frequency
 ~ 2 kHz
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Feedback Suppresses the Magnitude of RWMδΦn=1.RWM 
comparable to the original 2/1 fishbone δΦn=1.fb 
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The external (RWM) and internal (Fishbone) modes are both 
close to marginal stability.  Full analysis is needed    

332-08/MO/rsM. Okabayashi/IAEA/Oct2008
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22nd Oct 200822nd Oct 2008 12th ITPA MHD Stability TG in Lausanne12th ITPA MHD Stability TG in Lausanne 33

EWM was observed in the wall-stabilized high-βN regionEWM was observed in the wall-stabilized high-βN region

It is concluded that EWM is 
a high frequency branch of 
the coupling between 
energetic particles and 
RWM taking into account 
δWk

fast.

EWM can directly induce 
RWM despite enough 
rotation for RWM 
stabilization.

At IAEA FEC in Geneva, we have introduced
Energetic particle driven Wall Mode (EWM) .
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EWM can directly induce RWM, even though, rotation is enoughEWM can directly induce RWM, even though, rotation is enoughEWM can directly induce RWM, even though, rotation is enough

In the wall-stabilized high-βN region, 
Energetic particle driven Wall Mode 
(EWM) is newly observed.

In the wallIn the wall--stabilized highstabilized high--ββNN region, region, 
Energetic particle driven Wall Mode Energetic particle driven Wall Mode 
(EWM)(EWM) is newly observed.is newly observed.

At RWM onset, rotation was At RWM onset, rotation was 
enough for stabilization.enough for stabilization.

The EWM is dangerous for RWM

n=1

n=1

    Dr. Matsunaga: from IAEA FEC 2008 EXP/5_2
 “Dynamics and Stability of Resistive Wall Mode in the JT-60U High-βPlasmas”
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•  Similar to “fishbone burst”
•  Frequency ~ 6kHz ( precession frequency ~ 4 kHz)
•  Sensitive to the ratio of  P_perp / P_para
•  However, q_min > 1.3-1.5
   (may be difficult to be energized by energetic ions)
•  Bursting growth time ~ 1.5 ms
•  Plasma rotation Ω(at q~2)  can be higher than 20 km/s
•  Can be a precursor to “RWM-precursor”, (like ELM does)
    which is 50ms growth and like a kink, no magnetic islands
•  Can trigger a RWM at the condition of 
    Ω(at q~2)~ zero at  and/or dΩ(r)/dt ~zero 

332-08/MO/rs

 Energetic Particle Wall Mode (EWM) -- JT60U
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Energetic particle driven RWM leading to major beta collaspe 

          DIIID     JT60U
          2/1 fishbone-driven Energetic-particle-driven

• q-profile       q_min~ 2, flat    q(0) ~ 1.5 

• Onset Plasma rotation   nearly-zero    nearly-zero, not always     
   Around q~2       wider area     rotation drop, not always 

• Mode propagation    co-direction    co-direction     
          (co: ion diamagnetic / Ip-direction)

• Precession freqency     2 kHz      4 kHz
                 

• Mode growth time      500 µsec     1.5 ms 

• Hypothesis     Forced-RWM   Energetic particle wall mode (EWM)
         by 2/1 fishbone    By energetic particle
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Summary and Comments

• Energetic particle destabilizes RWM at low rotation
    (DIIID)  2/1 fishbone-driven RWM 
    (JT60U)  Energetic particle wall mode 

•  Full :δWmhd + δWwall + δWkinetic + δWenergetic 
  
 should coherently explain the EWM and 2/1 fishbone driven-RWM  
    
 - Mars-K code, Hu-Betti-Manickam code or 
    some analytical models)

 -  Results with δWenergetic is useful for assessing δWkinetic ?

 - how orbit effects are important?
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Summary and Comments

• Rotation profile effect

  (DIIID)  Rotation Ω(r) ~ zero  and dΩ(r)/dr~zero over some area
  (JT60U)  Sometimes, mode is excited above critical rotation
      dΩ(r)/dr~zero is also important

 --> not clear dependence yet

 --> Hidden parameter exists like residual error fields?
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