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RWM at low rotation plasmas

* DIlI-D /JT60U demonstrated the existence of RWM stable regime
in low rotation in IAEA FEC 2006

- Challenge to theoretical understanding;
Concept of a critical rotation

o Assessment of RWM stability near critical rotation
has been explored (IAEA FEC 2008):

-DII-D - ECCD-NTM suppression (IAEA 2008 EX-P9-5)

- JT60U - Scanning rotation by NBl combination
(IAEA 2008 - EX_5-2)
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Recent Results (IAEA 2008)

* Mode at low rotation at the beta collapse

(DII-D) non-rotating mode is likely NTM
(JT6OU) RWM (External kink)without magnetic island

e Energetic particles destabilize the RWM

(DII-D)  2/1 fishbone-driven RWM
(JT60U) Energetic particle wall mode (EWM)

--> Common Observations and Differences
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Recent ECCD-NTM Suppression Experiment is Useful

to Identify n=1 Global MHD above No-wall Limit
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Recent ECCD-NTM Suppression Experiment is Useful

to Identify n=1 Global MHD above No-wall Limit
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Recent ECCD-NTM Suppression Experiment is Useful

to Identify n=1 Global MHD above No-wall Limit
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Recent ECCD-NTM Suppression Experiment is Useful

to Identify n=1 Global MHD above No-wall Limit
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Recent ECCD-NTM Suppression Experiment is Useful

to Identify n=1 Global MHD above No-wall Limit
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Recent ECCD-NTM Suppression Experiment is Useful

to Identify n=1 Global MHD above No-wall Limit
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Long Duration RWM/NTM Free Operation at N > BN.no-wall

Routinely Achievable with ECCD NTM Suppression at Low Rotation
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Insensitivity to Feedback Suggests N=1 Non-rotating Mode is NTM

* No Obvious Preference was Observed to Feedback Being on or off, Feedback Phase Shift

OBp sensor signal (G)
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Sometimes Mode Rotates, However, Mode Structure

of Rotating / Non-rotating Modes are Identical

Rotating mode Non-rotating mode
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Plasma Rotation below the Previously-Reported Rotation

Threshold was Achieved with Pre-emptive ECCD-NTM Suppression

* Plasma rotation profile: ~ zero except near the edge

* Rotation at onset: below previously reported (Garofalo, IAEA FEC in 2006)

* Possible existence of RWM suppression mechanisms even when the plasma
rotation is totally absent
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On the best discharge, the high-,, was sustained for ~5s
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“Dynamics and Stability of Resistive Wall Mode in the JT-60U High-BPlasmas”
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JIr -60 U
High Betan above No-wall Limit is not Automatically

Guaranteed ( G. Matsunaga IAEA FEC 2008 EXP_5_2)
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Recent Results (IAEA 2008)

e Energetic particles destabilize the RWM

(DII-D)  2/1 fishbone-driven RWM
(JT60U) Energetic particle wall mode (EWM)

--> Common Observations and Differences
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2/1 Fishbone at Near-zero Rotation Triggers RWM (~ 50 Gauss)

Leading to beta-collapse
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Increase of near-zero rotation domain near q=2

leads to onset of RWM
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High Pn Discharges with Low Rotation Profile

Excites q=2 Fishbone-driven RWM
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Feedback Suppresses the Magnitude of RWMb®—1 rwM

comparable to the original 2/1 fishbone 6®,-1 1
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The external (RWM) and internal (Fishbone) modes are both

close to marginal stability. Full analysis is needed

« Small variations in the g-profile allow one or the other to dominate
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EWM was observedinthenwall=stabilized iigh=srregion

At IAEA FEC in Geneva, we have introduced @

Energetic particle driven Wall Mode (EWM)
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EWM can directly induce RWM, even though, rotation is enough
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Energetic Particle Wall Mode (EWM) -- JT60U

e Similar to “fishbone burst”
* Frequency ~ é6kHz ( precession frequency ~ 4 kHz)
e Sensitive to the ratio of P_perp / P_para
e However, g min> 1.3-1.5
(may be difficult to be energized by energetic ions)
e Bursting growth time ~ 1.5 ms
e Plasma rotatfion Q(at g~2) can be higher than 20 km/s
e Can be a precursor to "RWM-precursor”, (like ELM does)
which is 50ms growth and like a kink, no magnetic islands
e Can trigger a RWM at the condition of
Q(at g~2)~ zero at and/or dQ(r)/dt ~zero

PRINCETON PLASMA
PHYSICS LABORATORY

332-08/MO/rs




Energetic particle driven RWM leading to major beta collaspe

DIIID JT60U
2/1 fishbone-driven  Energetic-particle-driven
o g-profile q_min~ 2, flat q(0)~ 1.5
* Onset Plasma rotation nearly-zero nearly-zero, not always
Around gq~2 wider area rotation drop, not always
* Mode propagation co-direction co-direction

(co: ion diamagnetic / Ip-direction)

* Precession freqency 2 kHz 4 kHz

* Mode growth time 500 psec 1.5 ms

e Hypothesis Forced-RWM Energetic particle wall mode (EWM)
by 2/1 fishbone By energetic particle
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Summary and Comments

 Energetic particle destabilizes RWM at low rotation
(DIID)  2/1 fishbone-driven RWM
(JT60U) Energetic particle wall mode

o FUll:5Wmnd * dWwaqll + Wkinetic * SWenergetic
should coherently explain the EWM and 2/1 fishbone driven-RWM

- Mars-K code, Hu-Befti-Manickam code or
some analytical models)

- Results with d3Wenergetic is useful for assessing $Wkinetic ?

- how orbit effects are important?
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Summary and Comments

* Rotation profile effect

(DIIID) Rotation Q(r) ~ zero and dQ(r)/dr~zero over some area
(JT60U) Sometimes, mode is excited above critical rotation
dQ(r)/dr~zero is also important
--> not clear dependence yet

--> Hidden parameter exists like residual error fields?
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