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» Background
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ELM control is necessary for ITER

e Type-l ELMs in ITER have to be reduced
from 20MJ to below 1MJ

 ELM control coils are under study for ITER

ITER ELM control

coils casings




ELM suppression demonstrated on DIII-D
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Vacuum modelling suggests stochasticity

could be present at the edge
"
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ERGOS modelling for DIlI-D I-coils 2
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ELM suppression in DIII-D is correlated
with stochastisation in vacuum modelling

» Fenstermacher '08:

Width of stochastic layer (A.,,;.,) = good ordering parameter for ELM size
e Critical width for ELM suppression = ~3 pedestal widths
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D, (peak ELM) 1.6x10"*photicm?/st/s

0.1F

RMP ELM-free

e
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A

= ITER coils have been designed following the requirement A, ..,= 8%

Chir>1

But the physics is still not fully understood and DIII-D
Is the only machine to have obtained ELM suppression so far




Outline

» Experimental results on MAST with the EFCCs and the
new ELM control coils



2007 MAST experiments using
the Error Field Correction Coills

» 4 ex-vessel EFCCs which can produce n=1 or n=2

» n=1 delayed L-H transition / caused H-L back-
transition

* n=2 worked better and had some effect on ELMs
— Type-1 ELMy ref. discharge is not ideal
— Possible effect but hard to tell for sure
— Caused increase in Type-IV ELM frequency

MAST EFCCs

n=2 experiments
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2008 MAST experiments using new
Internal dedicated ELM control coils

* 6+6 colls producing n=3 perturbations

 Even and odd configurations are possible
— Which one is most resonant depends on g
—When even is on resonance, odd is
off-resonance and vice versa

2 .
1.5 MAST #17919
i ELM coils odd 5.6kAt
1.5}
ol MAST #17919
0- E EFCC n=2 12kAt
05- é 1
44 © -
1.5 0.5 DIll-D #125913
|-coils even 4kAt
0 JET #67959 EFCC n=1 32KAt
_ _ 0.7 0.8 42 09 1
« ERGOS vacuum modelling predicts large oo, Vol

— Larger than for ELM suppression with
the I-coils on DIII-D

— This is also the case for the MAST EFCCs
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* In L-mode, a density pump-out is observed
— Only with the resonant configuration of the coils (here even)
— Associated with a clear effect on I, signal g
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* Preliminary H-mode experiments show

clear effect on the ELMSs

—When increasing |__., the ELMs

coil?

become compound, then dithering

— An ELM-free plasma can be

by applying the coils (~NSTX,
COMPASS, JFT-2M)
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— Again, the effect is much stronger
with the resonant coils configuration

— Further tests are required when a
repeatable ELMing discharge is fully
established (second NBI available
after Christmas)
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Outline

» Attempting at full ELM suppression with the EFCCs on JET
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ELM control has been demonstrated
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...But ELM suppression was not obtained so far

« ERGOS modelling suggested that the perturbation from the EFCCs
was possibly not strong enough up to now
— The DIII-D criterion A,.., > ~8% was not fulfilled
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In recent experiments, we optimised

the scenario to maximise  Agping o o fo o Vo

e Optimisation based on ERGOS vacuum
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* The criterion A,
Nno success on ELM suppression
— Other “ingredients” may be required
 Remark: DIII-D has never claimed
that the criterion A, > ~8% Is
sufficient for ELM suppression
— Midplane coils not suited for ELM
suppression?
e In line with DIII-D results using
midplane C-colls
— Relevance of vacuum approximation?

r>1

> ~8% was fulfilled but
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Outline

» Non-linear MHD modelling of plasma response
to Resonant Magnetic Perturbations
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|s the B field really stochastic over the outer 8%

» This is suggested by the vacuum modelling, but

of the radius?

« Difficult to believe considering that dT /dr|.,5 Increases rather than drops

« What about rotational screening?

» Here, we present a basic non-linear MHD modelling in cylindrical geometry

for DIII-D-like parameters

» Islands penetration into the pedestal is slightly different from islands

penetration into the core

 Indeed, what matters for the screening is

Ve,perp = VE + V*e

with v = (E xB)/B?
and E, = v,Bg - vgB, + v.B

e Core and pedestal are different because:
— While in the core E, ~ v,B,,
in the pedestal E. ~ v,.B
— And while in the core v, << Vv,
In the pedestal v, ~ v

Core

Vi X

Pedestal

= Diamagnetic effects are of order O in the pedestal

F.L.
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Several previous works miss the important diamagnet Ic effects

» Nardon '07: JOREK simulations (non-linear MHD in realistic geometry)
— No diamagnetic effects (screening only from v,)

— Also, n several 100 times larger than experimental

» Beécoulet '08: cylindrical non-linear MHD simulations
and formulas from Fitzpatrick '98
— No diamagnetic effects (screening only from v

27] qo=102v,=0 || 168
g :
2T =108 W,=3102 ||
B l l |
0
i
d

&)

JOREK
DIlI-D simulation

Colorplot of j,"=°
+ isocontour lines

of L|Jp0|”=3

s
: N T
i B e R 1
o [ s 1
W M . e 3
1.8 - _..:'.-' e - . =
. Sa X o R |
oy . 1 et J
. ot e et e e sl
i f E T, e -~
e ¥ B -1
i M e BT
Py ot " y wff SHE L
y
" ."-.'I . '
T '. { L lI. II
-- - e | L]
A i
- " T
N ) - i, P
El" i’ i - x
ah ¥
G e v -
|I 'll LY o -
| [ L 2
H g ol
L
i %
L] 1 -
1l P
L4 o . -
-—J
L s
| 8-
x -
by
.
N ] _— ‘]
o
T 3 =
= ] m L .
E,
0.5 r/

20




Heyn 08 includes
the diamagnetic effects

» Cylindrical, kinetic simulations and
formulas from Cole '06

» E, is calculated from v,; and v,
experimental profiles, assuming v,=0

= Strong screening (factor ~100)
everywhere except

- at the very edge (large n)

- at locations where v, =0
» Our work resembles M. Heyn’s
but it is based on a fluid model and we
directly use the experimental E, profile
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M.F. Heyn et al., Nucl. Fusion 48 (2008) 024005




The model: cylindrical non-linear reduced MHD
with cold ions and =0

Induction equation: @/ +|[], (¢ — dj) = /7(J - ‘]o)
—

Origin of screening Eurrents: Source term through which

(\7E + \7*e) (B, we impose the E, profile
Vorticity equation: 0,W + [¢,W] +1,J :EIAD(W —m
S

Limitation of the model: complex mechanisms (damping of poloidal
rotation, physics of rotation in H-mode pedestal) are treated as viscosity

Pressure equation: 0, P+ [¢, p] = KDAD(D - po)
/

Source term through which we
Impose the H-mode pressure profile
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Input parameters

» DIII-D-like parameters:
R=1.69m, a=0.6m, B=1.89T

> Flat density: n_=2.10""m">
> 1keV T, pedestal

» Realistic resistivity
* This was a problematic
limitation in JOREK

simulations
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» Experimental E, (kV/m) (Burrell, PPCF 47 (2005) B37)
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* v,,and v add up in the middle of the pedestal

 but cancel out at the top (# M. Heyn)
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> Quadratic current profile: J,=J,,(1-(r/a)?)?

»  Only one harmonic of the RMPs is treated (m=9, n=3)
« External forcing imposed through boundary conditions
« RMPs amplitude on the order of the I-coils perturbations

» Inreality there are several resonant surfaces across the pedestal
= Jyo Is varied in order to move the resonant surface (q=3)

al o T Q 1) g=3 at the top of the pedestal
2 ...... V ......... ,:.r;l' ..... . ‘ 2) q:3 In the mlddle Of the pedestal
/.. I A
(Y f
Vo, "\ 3) g=3 at the bottom of the pedestal
P mm - R Lo
5.8 0.':35 0.9 0.95 1

» Only the (m,n)=(0,0) and (9,3) harmonics are calculated
 Non-linear model in the sense that (9,3) interacts with itself to
modify (0,0))

» Viscosity: Re=10° <« ~40m?/s (not clear what value to choose) 24



Results: 1) g=3 at the top of the pedestal

Evolution of ¥, . at g=3 Magnetic perturbations (W, ,) profile
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Results: 2) g=3 in the middle of the pedestal
Magnetic perturbations (LIJ%) profile

Evolution of LP% at g=3

-5
2x 10
6 - b e
5-
Ab o F -
; —real(y, )
I
3...,' ....................................................... _|mag{\pglll3]
L}
ki ==Yz yac
1 E
i :
1'l e e e e h e e e e e e e e e e e e
]
l:]I
-1 L L L L i
0 02 04 06 08 1
time (s) -3

— RMPs are strongly screened

» No reconnection at all: typical feature
of the inertial regime (Fitzpatrick '98)
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» The inertial regime is characterized by Alfvén resonances located outside

the resistive layer

* Alfvén resonance condition:

Ve (v +vi k2 =| 1+

Vi
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Results: 3) g=3 at the bottom of the pedestal

Evolution of LP% at g=3
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Magnetic perturbations (LIJ%) profile

= RMPs penetrate
(with even some amplification)

» Penetration time <500us
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These results suggest a speculative picture of how the field may look like

» Instead of one large stochastic layer,
there could be two stochastic layers
Isolated by good flux surfaces

» Qualitatively consistent with both
* the absence of drop in dT _/dr| g
* the DIII-D criterion A, > ~8%

r>1

Vacuum field

» However, at first sight it does not seem r/a
consistent with the increase in E_ inside >
the pedestal (because we expect penetration
requires v ~ V., and v, is small)
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Summary and outlook (1/2)

» ELM control by RMPs is a promising method for ITER but a better
understanding is required

» MAST experiments show a clear effect of both EFCCs and new ELM
control coils on the ELMs, but no ELM suppression in spite of large A, .,
« More experiments upcoming (2" NBI available after Christmas)

» Ongoing experiments at JET aiming at maximising A, ., With the EFCCs

— No ELM suppression so far
* Next experiment will use EFCCs n=2 instead of n=1

— ELM suppression appears more complicated to obtain than fulfilling
Aqpisq > 8% (which is the guideline used for ITER up to now)
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Summary and outlook (2/2)

» A basic non-linear MHD modelling strongly questions the vacuum approach
« Diamagnetic effects are of order 0 in the pedestal
» A strong screening is expected in the middle of the pedestal
* Field penetration can take place at the very edge and towards the top of
the pedestal

» Much progress to be done on the modelling
 Cylindrical modelling: calculate several harmonics (e.g. 8/3+9/3+10/3),
iInclude more physics (damping of the poloidal rotation etc.)
« Come back to realistic geometry (JOREK, BOUT++ [Univ. York])
and include diamagnetic effects
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Back-up slides
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ldeal MHD stability analysis

» In DIII-D, RMPs maintain the profiles in the stable region for
peeling-ballooning modes

* The peak value of dp/dr is not affected much
* The region most affected by the RMPs is actually inside the pedestal
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ldeal MHD stability analysis

» In JET, the plasma remains unstable but moves towards
the peeling boundary (Saarelma '08)

* Mode structure less extended radially, consistent with smaller ELM size

During EFCCs pulse
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* A key question for ITER is the possibility to combine ELM mitigation
and pellet fuelling

— In MAST, a pellet makes the dithering plasma become ELM-free

Pellet
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Time (Sec)
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Screening currents do not change magnetic footprint env

JET mode_llinq (EFCCs n=1)
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