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• Type-I ELMs in ITER have to be reduced 
from 20MJ to below 1MJ

• ELM control coils are under study for ITER

ITER ELM control 
coils casings

ELM control is necessary for ITER

Tolerable 
ELM size

Predicted 
ELM size



6

time (ms)

I-coils
4kAt

ELM suppression demonstrated on DIII-D

I-coils: 6+6 coils, n=3, ~4kAt

ne

Te

• ELM suppressed for tens of τE

• H98(y,2) not affected

• Works only in a narrow resonant q95 
window

• Drop in density: « pump-out »

• dTe/dr|ETB increases rather than drops!
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Br

ERGOS modelling for DIII-D I-coils

Vacuum modelling suggests stochasticity 
could be present at the edge
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� Fenstermacher ’08:
Width of stochastic layer (ΔChir>1) = good ordering parameter for ELM size

• Critical width for ELM suppression = ~3 pedestal widths

ELM suppression in DIII-D is correlated 
with stochastisation in vacuum modelling

RMP ELM-free

E
LM

 s
iz

e

ΔChir>1

But the physics is still not fully understood and DIII-D 
is the only machine to have obtained ELM suppression so far

⇒ ITER coils have been designed following the requirement ΔChir>1= 8%
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• 4 ex-vessel EFCCs which can produce n=1 or n=2

• n=1 delayed L-H transition / caused H-L back-
transition

• n=2 worked better and had some effect on ELMs
– Type-I ELMy ref. discharge is not ideal
⇒ Possible effect but hard to tell for sure
– Caused increase in Type-IV ELM frequency

2007 MAST experiments using 
the Error Field Correction Coils

n=2 experiments

EFCC current

EFCC current

fELM

MAST EFCCs
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2008 MAST experiments using new 
internal dedicated ELM control coils

• 6+6 coils producing n=3 perturbations
• Even and odd configurations are possible

– Which one is most resonant depends on q95
– When even is on resonance, odd is 
off-resonance and vice versa

Even Odd

• ERGOS vacuum modelling predicts large σChirikov
– Larger than for ELM suppression with 
the I-coils on DIII-D
– This is also the case for the MAST EFCCs
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• In L-mode, a density pump-out is observed
– Only with the resonant configuration of the coils (here even)
– Associated with a clear effect on ISAT signal 
from the reciprocating probe

Coils current
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ELMs become compound

Then dithering

– Again, the effect is much stronger 
with the resonant coils configuration

– Further tests are required when a 
repeatable ELMing discharge is fully 
established (second NBI available 
after Christmas)

• Preliminary H-mode experiments show 
clear effect on the ELMs

– When increasing Icoil, the ELMs
become compound, then dithering

– An ELM-free plasma can be 
turned into a regular ELMing one 
by applying the coils (~NSTX, 
COMPASS, JFT-2M)
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ELM control has been demonstrated
on JET with the EFCCs

EFCCs: n = 1 or 2, <36.8kAt

n=1 experiment (Liang ’07)

fELM ↑, ∆WELM ↓

Pump-out (~DIII-D)

No drop in dTe/dr|ETB
(~DIII-D)
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Best JET case <2008:
# 67959

• ERGOS modelling suggested that the perturbation from the EFCCs 
was possibly not strong enough up to now

– The DIII-D criterion ΔChir>1 > ~8% was not fulfilled

…But ELM suppression was not obtained so far
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• Optimisation based on ERGOS vacuum 
modelling 
⇒ Work at low Ip & Bt, high βp, EFCCs n=1 Stochastic region

# 75342 @ 27.0s

22 24 26 28Time (s)

Ip= 0.84 MA; Bt= 1.26-1.16T

JET # 75342

IEFCC

Dα

PNBI (107 W)

q95

βpol

li

nel (1019 m-2)

Wp (MJ)

In recent experiments, we optimised 
the scenario to maximise ΔΔΔΔChirChirChirChir>1>1>1>1

• The criterion ΔChir>1 > ~8% was fulfilled but 
no success on ELM suppression

– Other “ingredients” may be required
• Remark: DIII-D has never claimed 
that the criterion ΔChir>1 > ~8% is 
sufficient for ELM suppression

– Midplane coils not suited for ELM 
suppression?

• In line with DIII-D results using 
midplane C-coils

– Relevance of vacuum approximation?
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� This is suggested by the vacuum modelling, but
• Difficult to believe considering that dTe/dr|ETB increases rather than drops
• What about rotational screening?

� Here, we present a basic non-linear MHD modelling in cylindrical geometry 
for DIII-D-like parameters

� Islands penetration into the pedestal is slightly different from islands 
penetration into the core

• Indeed, what matters for the screening is 
ve,perp = vE + v*e

with vE = (EEEErrrrxBBBB)/B2

and Er = vφiBθ - vθiBφ + v*iB

• Core and pedestal are different because:
– While in the core Er ~ vφiBθ, 
in the pedestal Er ~ v*iB
– And while in the core v*e << vE, 
in the pedestal v*e ~ vE

Is the B field really stochastic over the outer 8% of the radius?

vφ

vE
v//

F.L.
Core

vE

F.L.
Pedestal

v*i

⇒ Diamagnetic effects are of order 0 in the pedestal
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� Nardon ’07: JOREK simulations (non-linear MHD in realistic geometry)
– No diamagnetic effects (screening only from vφ)
– Also, η several 100 times larger than experimental

� Bécoulet ’08: cylindrical non-linear MHD simulations 
and formulas from Fitzpatrick ’98

– No diamagnetic effects (screening only from vφ)

Bécoulet IAEA ’08 (DIII-D simulation)

r/a0.5 1

JOREK 
DIII-D simulation
Colorplot of jφn=3

+ isocontour lines
of ψpol

n=3

I-coils

Several previous works miss the important diamagnet ic effects
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Screening factor:
Br

mn(plasma)/Br
mn(vac.)

ρtor

Velocity profiles

� Cylindrical, kinetic simulations and 
formulas from Cole ’06

� Er is calculated from vφi and v*i
experimental profiles, assuming vθi=0

⇒ Strong screening (factor ~100) 
everywhere except

- at the very edge (large η)
- at locations where ve,perp=0

� Our work resembles M. Heyn’s
but it is based on a fluid model and we 
directly use the experimental Er profile 

HeynHeynHeynHeyn ’’’’08 includes 08 includes 08 includes 08 includes 
the diamagnetic effectsthe diamagnetic effectsthe diamagnetic effectsthe diamagnetic effects
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The model: cylindrical non-linear reduced MHD 
with cold ions and β=0

( ) ( )0// JJpt −=−∇+∂ ηδφψInduction equation:

[ ] ( )0//, WWJWWt −∆=∇++∂ ⊥⊥νφVorticity equation:

Origin of screening currents:
Source term through which 
we impose the Er profile

Limitation of the model: complex mechanisms (damping of poloidal
rotation, physics of rotation in H-mode pedestal) are treated as viscosity

( ) reE Bvv
~

* ⋅+

Pressure equation: [ ] ( )0, ppppt −∆=+∂ ⊥⊥κφ

Source term through which we 
impose the H-mode pressure profile
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Initial vE and v*e
in simulations

Input parameters

� DIII-D-like parameters: 
R=1.69m, a=0.6m, Bt=1.89T

� Flat density: ne=2.1019m-3

� 1keV Te pedestal

� Realistic resistivity
• This was a problematic 
limitation in JOREK 
simulations

log10(Lundquist)

• v*e and vE add up in the middle of the pedestal
• but cancel out at the top (≠ M. Heyn)

� Experimental Er (kV/m) (Burrell, PPCF 47 (2005) B37)

Before I-coils

During I-coils 
(ELMs suppressed)
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� Quadratic current profile: J0=J00(1-(r/a)2)2

� Only one harmonic of the RMPs is treated (m=9, n=3)
• External forcing imposed through boundary conditions
• RMPs amplitude on the order of the I-coils perturbations

� In reality there are several resonant surfaces across the pedestal
⇒ J00 is varied in order to move the resonant surface (q=3)

� Only the (m,n)=(0,0) and (9,3) harmonics are calculated
• Non-linear model in the sense that (9,3) interacts with itself to 

modify (0,0))

� Viscosity: Re=10-5 ↔ ~40m2/s (not clear what value to choose)

1) q=3 at the top of the pedestal

2) q=3 in the middle of the pedestal

3) q=3 at the bottom of the pedestal
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Results: 1) q=3 at the top of the pedestal

⇒ RMPs penetrate (although not fully)

� Penetration time ~1ms

Evolution of Ψ9/3 at q=3 Magnetic perturbations (Ψ9/3) profile

θ

r/a
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Results: 2) q=3 in the middle of the pedestal

⇒ RMPs are strongly screened

� No reconnection at all: typical feature 
of the inertial regime (Fitzpatrick ’98)

Evolution of Ψ9/3 at q=3 Magnetic perturbations (Ψ9/3) profile

θ

r/a
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� The inertial regime is characterized by Alfvén resonances located outside 
the resistive layer

• Alfvén resonance condition:

( ) 2
//

*2
* 1 k

v

v
kvvv

E

e
eEE 








+=+ ⊥

Perturbed 
current (j9/3) 
profile
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Results: 3) q=3 at the bottom of the pedestal

� Penetration time <500µs

⇒ RMPs penetrate 
(with even some amplification)

Evolution of Ψ9/3 at q=3 Magnetic perturbations (Ψ9/3) profile

θ

r/a
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These results suggest a speculative picture of how the field may look like

� Instead of one large stochastic layer,
there could be two stochastic layers 
isolated by good flux surfaces

� Qualitatively consistent with both
• the absence of drop in dTe/dr|ETB
• the DIII-D criterion ΔChir>1 > ~8%

� However, at first sight it does not seem 
consistent with the increase in Er inside 
the pedestal (because we expect penetration 
requires vE ~ v*e, and v*e is small)

r/a

10

Vacuum field

Stochastic

Pedestal

r/a
10

Stoch.
1

With plasma response

Stoch. 
2

Flux 
surfaces

PedestalBefore 
I-coils

During I-coils 
(ELMs

suppressed)
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Summary and outlook (1/2)

� ELM control by RMPs is a promising method for ITER but a better 
understanding is required

� MAST experiments show a clear effect of both EFCCs and new ELM 
control coils on the ELMs, but no ELM suppression in spite of large ΔChir>1

• More experiments upcoming (2nd NBI available after Christmas)

� Ongoing experiments at JET aiming at maximising ΔChir>1 with the EFCCs
⇒ No ELM suppression so far

• Next experiment will use EFCCs n=2 instead of n=1

⇒ ELM suppression appears more complicated to obtain than fulfilling 
ΔChir>1 > 8% (which is the guideline used for ITER up to now)
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� A basic non-linear MHD modelling strongly questions the vacuum approach
• Diamagnetic effects are of order 0 in the pedestal
• A strong screening is expected in the middle of the pedestal
• Field penetration can take place at the very edge and towards the top of 
the pedestal

� Much progress to be done on the modelling
• Cylindrical modelling: calculate several harmonics (e.g. 8/3+9/3+10/3), 
include more physics (damping of the poloidal rotation etc.)
• Come back to realistic geometry (JOREK, BOUT++ [Univ. York]) 
and include diamagnetic effects

Summary and outlook (2/2)
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Back-up slides
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� In DIII-D, RMPs maintain the profiles in the stable region for 
peeling-ballooning modes

• The peak value of dp/dr is not affected much
• The region most affected by the RMPs is actually inside the pedestal

Ideal MHD stability analysis

Evans ’08

0kA 
(ELMing)

4kA
(ELMing)

6.3kA
(ELM free)

Snyder ’07
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� In JET, the plasma remains unstable but moves towards 
the peeling boundary (Saarelma ’08)

• Mode structure less extended radially, consistent with smaller ELM size

α

Ideal MHD stability analysis

During EFCCs pulseBefore EFCCs pulse

α(j e
dg

e ,
m

ax
+

j se
p)

/2
 (

M
A

.m
-2

)

Toroidal mode number of most unstable mode
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• A key question for ITER is the possibility to combine ELM mitigation 
and pellet fuelling

– In MAST, a pellet makes the dithering plasma become ELM-free

Pellet
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q=5

q=5

Screening currents do not change magnetic footprint env elope
Vacuum field

With helical currents put by hand on q=5 to screen the local RMPs

Nardon ’08JET modelling (EFCCs n=1)


