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Previous results from HBT-EP

HBT-EP has been used to study external kink and resistive wall modes for over a decade.

e The effect of a close-fitting conducting wall
on external kink stability was investigated
as early as 1996 [lvers, et. al., 1996].

e Next, feedback suppression of the exter-
nal kink mode was demonstrated using ra-
dial sensors and radial control coils [Cates,
et. al., 2000].
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e This coil set was also used to apply resonant perturbations to plasmas near the marginal stability
limit. Agreement with the Fitzpatrick-Aydemir model in the high-dissipation limit was found [Shilov,
et. al., 2004].

e Feedback suppression of the external kink near the ideal wall limit was achieved using the present
network of poloidal sensor coils and radial control coils. [Klein, et. al., 2005].



New results

e A Kalman filter algorithm has been implemented on a set of low-latency digital
feedback controllers, and used to excite and suppress the (m,n) = (3, 1) external
kink instability on HBT-EP.

e The Kalman filter uses a simple, internal model for a growing, rotating mode.

e Excellent performance was achieved with initial guesses for filter model parame-
ters; performance was a bit better when the parameters were optimized.

e Kalman filter feedback works under noisy conditions that disrupt feedback with
conventional algorithms.



Motivation: tokamaks are noisy

e We are interested in using magnetic feedback to suppress the tokamak external
kink instability.

e The external kink is a rotating, helical perturbation to the plasma’s surface and
magnetic field. As it rotates by a magnetic pickup coil, oscillations are observed.

e However, there’s a lot of noise in measurements due to other magnetic activity:
tokamaks are noisy!

e Noise can impair feedback, but an advanced filtering algorithm called the Kalman
filter can come to the rescue.
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e Future burning plasma experiments will likely need advanced filtering to optimize
feedback in the presence of edge-localized modes and other MHD noise.
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Simulating external kink mode feedback



The reduced Fitzpatrick-Aydemir model is used to simulate feedback

e The reduced Fitzpatrick-Aydemir equations®? are used to simulate the (m,n) =
(3, 1) external kink mode.°

e The Fitzpatrick-Aydemir model has been shown to accurately characterize experi-
mental observations on HBT-EP.¢

e Growing, rotating, n = 1 plasma and wall modes are produced.
e The stabilizing effects of viscous damping and plasma rotation are accounted for.

e Coupling physics for the wall and feedback coils is included from a VALEN® model for
HBT-EP.

e Noise can be added to measurements of the mode, in the form of a random ampli-
tude and phase.

e It's interesting to see how noise affects feedback!

4R. Fitzpatrick and A.Y. Aydemir, Nucl. Fusion 36, 11 (1996).
bR. Fitzpatrick, Phys. Plasmas 9, 3459 (2002).

°M. E. Mauel, et. al., Nucl. Fusion 45, 285 (2005).

9M. Shilov, et. al., Phys. Plasmas 11, 2573 (2004).

€J. Bialek, et. al., Phys. Plasmas 8, 2170 (2001).



The reduced Fitzpatrick-Aydemir model is used to simulate feedback

e The reduced Fitzpatrick-Aydemir equations®? are used to simulate the (m,n) = (3, 1) external kink
mode.°

e The Fitzpatrick-Aydemir model has been shown to accurately characterize experimental observations
of the RWM on HBT-EP.?

e Growing, rotating, n = 1 plasma and wall modes are produced.

e The fluxes at the plasma and the wall are given as a function of plasma parameters, coupling param-
eters and a control flux.

dy ~
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where ) 5 2
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y= (ww ’ A= Ywy/c ’ _ﬁ_ 7 and B = 'Yw(lgccf)
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With the normalized stability parameter s = 1.0 and the rotation-dissipation parameter a =
—14Q/~2, . = —1.41 (corresponding to a rotation rate of 5 kHz).

4R. Fitzpatrick and A.Y. Aydemir, Nucl. Fusion 36, 11 (1996).
bR. Fitzpatrick, Phys. Plasmas 9, 3459 (2002).
°M. E. Mauel, et. al., Nucl. Fusion 45, 285 (2005).

9M. Shilov, et. al., Phys. Plasmas 11, 2573 (2004).



Instability grows exponentially without feedback
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Proportional gain feedback can stabilize the mode
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e Proportional gain feedback
efficiently stabilizes the mode.

e \What about when we add noise?



Stabilization is possible with noise, but power requirement is high
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Stabilization is possible with noise, but power requirement is high

With noise Without noise
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The Kalman filter



What is a Kalman filter?

e The Kalman filter? combines an internal, linear model for a system of interest with
measurements to produce a real time estimate for the system’s state.

e The internal model might be slightly inaccurate or incomplete.
e Likewise, measurements could be incomplete or noisy.

e With the Kalman filter, reliance on the model vs. the measurements can be adjusted.

High emphasis on internal model High emphasis on measurements
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e In simulation and experiments, we use a Kalman filter with a moderate amount of
emphasis on the internal model.

4R. E. Kalman, Transactions of the ASME—Journal of Basic Engineering 82, (Series D), 35 (1960).



The Kalman filter is a simple matrix equation

T = O;x;1 + K;Z,

where  is the optimal estimate of the system state and z'is a vector of measure-
ments.

Here,

= (I — K;H)(A+ BGH), and
(APA'+ Q)H'(H(ARA'+ Q) H' + R) ™.

System response to a control input

Gain

Model for measurement dynamics

Error covariance of estimate

QQ, R System and measurement noise covariances

P;
K;
A A model for the system dynamics
B
G
H

T

e Increasing terms in () means the model is trusted less. Increasing terms in R
means measurements are trusted less.

e In experiments, we use a filter with a constant Kalman gain, K;, — K.
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The internal model depends only on the mode’s growth and rotation
rates

e The state-vector contains the cos ¢ and sin ¢ Fourier components of an n = 1 mode.
f — [BE)OS7 BIS)HI]

e The internal model advances the mode at a prescribed growth and rotation rate.
dz _
S R I
dt (w v)

By (t) = exp(yt)R(w t)ép(o)-

e The solution is
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The Kalman filter stabilizes the mode quickly and efficiently
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e With the Kalman filter, less control
power is used, especially after the mode
is stabilized.

e The mode is stabilized more quickly.

e The Kalman filter neatly removes the
noise from the feedback signal.
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The Kalman filter stabilizes the mode quickly and efficiently

With the Kalman filter Without the Kalman filter
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HBT-EP diagnostics and control hardware



HBT-EP has passive and active stabilization hardware

T U ~ e There are 10 thick aluminum shells with

‘\ a long wall time
o T Ly g wal e
Radial control ~\ e There are 10 thin stainless steel shells
s \/‘/"

|
.1 . . .
coil pair ) with a short wall time.

o
)/ e For feedback experiments, Al shells are
>, pulled back 4 cm from the plasma sur-

face, for 1/, ~ 300 usec.

Poloidal sensor

Alumi 11
umium wa T coil (inside)

section Stainless steel
wall section

e We have 20 poloidal sensor coils and 20 pairs of radial control coils.
e The control coils are small and localized: they only cover 15% of the plasma surface.

e The coils are divided into four independent, parallel feedback loops.

* Group:
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Each feedback loop consists of 5 sensor coils and control coil pairs

Y —

Analog
Filtering

FPGA . Analog

Amplification

e Each feedback loop has its own field programmable gate array (FPGA) controller.

e With 5 evenly spaced sensors, n = 1 instabilities can be detected with Fourier
analysis.

14



The feedback algorithm is implemented on low-latency field
programmable gate array controllers

D sensor
coils

5 control
coils

(\%

lag

A

Kalman

lead

added

noise

e A spatial discrete Fourier transform (DFT) is
used to select the n = 1 mode.

e Phase lag and lead compensators correct for
hardware transfer functions.

e Noise can be added after the DFT to test the
robustness of control algorithms.

e The Kalman filter can be bypassed to get a con-
ventional algorithm.

e The toroidal phase of the output is adjustable.
e Total latency is ~10 usec, external kink insta-

bilities grow and rotate on a 100-500 usec
timescale.
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Experimental results



A current ramp is used to create external kink modes
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e The plasma current is ramped at ~3
MA/sec to create a current density
gradient at the edge of the plasma.

e As the ¢ = 3 surface goes external,
a rotating n = 1 mode is observed in
the magnetics.

e The mode grows exponentially, then
saturates.

e Average growth rate is 5 msec™!, but

it varies shot to shot.

e Rotation frequency is near 3—5 kHz,
and it often sweeps in time.

16



The toroidal phase of feedback is an adjustable control parameter

e Sensors measure the poloidal field, but feedback coils are radial. So a phase-shift
IS needed for negative feedback.

e Phase shifts also appear due to controller latency and imperfect optimization of the
system transfer function.

:— 0B, Feedback

0 mn/2 3m/2 2

m
Toroidal Angle ¢
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Feedback can be phased to either suppress or excite the mode
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e With feedback off, fluctuations near
4 kHz are observed on a poloidal
sensor coil.

e Positive feedback can be used to
excite the mode.

e Negative feedback decreases
mode’s amplitude.
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Feedback phase angle scan shows clear regions of excitation and
suppression
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Feedback phase angle scan shows clear regions of excitation and
suppression
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The Kalman filter removes added noise very effectively
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e White frequency spectrum, Gaus-
sian noise was added to the algo-
rithm after the DFT stage.

e This effectively added a random
amplitude and phase to the n = 1
mode.

e The Kalman filter was able to track
the mode well, even with large am-
plitude noise.
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Kalman filter feedback remains robust when additional noise is
added to the system
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Kalman filter feedback remains robust when additional noise is
added to the system
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Kalman filter feedback remains robust when additional noise is
added to the system
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Kalman filter feedback remains robust when additional noise is
added to the system

Without added noise With added noise
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Kalman filter parameter scans are used to determine best settings

e We are interested in how the following parameters in the Kalman filter's system
model affect feedback:

~ Estimate of the mode’s growth rate
w Estimate of the mode’s rotation rate
() Uncertainty in the system model

e The impact of these settings can be investigated in both the simulation and experi-
ment by scanning one parameter at a time.

e For each scan point, the RMS average of the poloidal field is subtracted from feed-
back off average and normalized to a percentage.

e Percent differences greater than zero imply feedback excitation, percent differences
less than zero imply suppression.

e This makes it straightforward to compare simulation results with those from the ex-
periment.
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Kalman filter parameter scans point to best settings

Simulation results
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Kalman filter parameter scans point to best settings

Simulation results
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Kalman filter parameter scans point to best settings

Simulation results Experimental results

20 ' ' 20
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e Scans of w were done at two settings of ()
e Remember, () is the amount of uncertainty in the Kalman filter’s internal model.

e The larger value of () leads more flexibility in the setting of w and better suppression
of the mode.
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Key differences between simulation and experiment

Simulation HBT-EP

Without feedback, instabilities grow infinitely  Instabilities saturate at finite amplitude.
large.

Mode lasts as long as we like. Can only maintain edge current gradient for
~1 msec.

Unique, fixed growth and rotation rates. A range of growth and rotation rates are
observed.

Mode rotation is smooth, fluctuations are Fluctuations are not always sinusoidal,

sinusoidal. maybe due to interaction with a complex

conducting boundary.

‘I’O [ T T T - T
- B from experiment

0.5F

B;in‘ from model

F 65377
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Choosing a more optimal set of filter parameters leads to improved
performance

- 1.00

e The original filter worked quite well.

e With the new settings, feedback sup-
pression and excitation are stronger.
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Choosing a more optimal set of filter parameters leads to improved
performance

1.00

e The original filter worked quite well. Ay

e With the new settings, feedback sup-
pression and excitation are stronger.
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Choosing a more optimal set of filter parameters leads to improved
performance

Before optimization After optimization
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There’s evidence of multiple simultaneous modes

e HBT-EP has a high-density poloidal array of pickup loops that can resolve high m-number fluctua-
tions.

e A combined analysis of these and the sensor coils turned up evidence of a (m,n) = (6,2) mode.

(m,n) = (3,1) fluctuations (m,n) = (6,2) fluctuations
0.857 0.126
0.715 0.105
0.572 0.0842
1 0.429 - 0.0631
1 0.286 1 0.0421
1 0.143 41 0.0210
0.00 0.00

e The (6,2) mode is a lot smaller than the (3, 1), and higher in frequency.

e It also seems to be mostly unaffected by feedback.
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Conclusions and future work



Conclusions

e A Kalman filter algorithm has been implemented on a set of low-latency digital
feedback controllers, and used to excite and suppress the (m,n) = (3, 1) external
Kink instability on HBT-EP.

e The Kalman filter uses a simple, internal model for a growing, rotating mode.

e Excellent performance was achieved with initial guesses for filter model parame-
ters; performance was a bit better when the parameters were optimized.

e Kalman filter feedback works under noisy conditions that disrupt feedback with
conventional algorithms.
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Future work

20 Adjustable Wall Segments

Toroidal and Poloidal
Magnetic Field Detectors

40 Poloidal ode Sensors

6 (x20) Control Coils for
Modularity Tests

e A new wall will be installed in early 2009.
e There will be an increased number of small control coils for modularity and mode rigidity studies.

e ITER will also have small, modular control coils. We will address whether these types of coils can
suppress low-wavelength modes.
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Conclusions

e A Kalman filter algorithm has been implemented on a set of low-latency digital
feedback controllers, and used to excite and suppress the (m,n) = (3, 1) external
Kink instability on HBT-EP.

e The Kalman filter uses a simple, internal model for a growing, rotating mode.

e Excellent performance was achieved with initial guesses for filter model parame-
ters; performance was a bit better when the parameters were optimized.

e Kalman filter feedback works under noisy conditions that disrupt feedback with
conventional algorithms.
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Extra slides



A Simple Control Coil Model
The control coils are modeled by?

dy.  R. M.
dt —I_L_ch_ LC‘/C

or, equivalently
M.

R,

wcn — Ewcn—l +

with € = exp(—R./ L. 6t).

aM. E. Mauel, et. al., Bull. Amer. Phys. Soc. Paper BP1.00007

(1 —€)Ven
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The Time-varying Kalman Filter uses a simple, internal model

7F = A%, , + Bi,

Ty =15+ K, (2, — HT)
Py =AP, 1A' +Q
K,=P'HHPH +R)"!
P, = (I - K,H)P,

The state vector is

r(n) = (chos(n), Bpsm(n), B;OS(n— 1), Bpsm(n— 1)).
The system model A comes from the dynamics of a growing, rotating mode.
i B;OS _ Revy, —Imy; B;OS |
dt \ B," Imvy;, Revy B

with v = 1.27 + 4.26i kHz.
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Time-varying Kalman Filter
The Bu term must give the response of the kink mode to a control flux.

3

1l —c

Bil = 26t ( ) Re [((2\@ —(1+40)-&)E"L R) & (e}m) wc]

Here, = contains the eigenvectors of the reduced Fitzpatrick-Aydemir system matrix
in its columns, and k the index of the unstable eigenvalue.?

Note: to solve this equation, we must measure the flux in the control coils.

aM. E. Mauel, et. al., Bull. Amer. Phys. Soc. Paper BP1.00007
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The Steady-State Kalman Filter is easy to implement

The time-varying Kalman Filter is probably too large to implement on HBT-EP’s
present mode control system.

Take the limit of the time-varying Kalman filter in which n — oc.

This filter has a simple form — the controller does not need to compute a matrix

inverse.
T, = P2, 1+ K7z,

The matrices can be calculated in advance.
& — (I — KH)(A+ BGH)
A ~ A ~
K = (APA + Q)H'(H(APA + Q)H' + R)™*

The control flux ). must be added to the state vector.

Z(n) = (Vo= (n), ¥ (n), B;*(n), B;"(n))
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Steady-State Kalman Filter

There is a subtlety: if the control flux is not measured, it must be computed from the

control voltage.

ERC O .

MC MC(1—€> R gp ng

G = ?(1 — 6) 0 M:(lc—e) —9p YGp
029 029

The response of the system to the control flux must be calculated, too.

o 0

B = 0 o

022

022

022

Here, o = 20t->-((2y/c, —(1 +¢)) - &)(Z" - R) - é..

When calculating the filter parameters, the real part of the product BG is used.
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