MHD Issues in Low-A RFP Machine RELAX

S. Masamune, A. Sanpei, R. Ikezoe, T. Onchi, K. Oki, T. Yamashita, H. Shimazu, H. Himura, N. Nishino1), R. Paccagnella2)

\textit{Kyoto Institute of technology, Kyoto, Japan}
1)\textit{Hiroshima University, Higashi-hiroshima, Japan}
2)\textit{Consorzio RFX, Padova, Italy}
REversed field pinch of Low-Aspect-ratio eXperiment

- $R/a = A = 2$
 (51 cm/25 cm)

- Optimization in progress

Kyoto Institute of Technology
Normal RFP discharges established

- Ip (kA)
- Voop (V)
- Bt-wall (mT)
- \(\langle B_t \rangle \) (G)

Time (ms)

\(~ 30 \, V\)
• Experimental study on advantages of low-\(A \) RFP configuration
- Improved confinement with QSH for achieving high beta
- Experimental identification of bootstrap current
 (target parameters: \(T_e \sim 300\text{eV}, \ n_e \sim 4 \times 10^{19}\text{m}^{-3} \) at \(I_p \sim 100\text{kA} \))
Tearing and RWM play important roles in the RFP configuration and sustainment through nonlinear MHD phenomena.

Nonlinear MHD Phenomena:
- Relaxation
- Dynamo
- Magnetic reconnection
- Magnetic chaos
- Ion heating
- Momentum transport

RFP Configuration (Global structure)

MHD Instabilities

- Formation and sustainment of the configuration through nonlinear MHD
- Of general interest as a control problem of highly nonlinear system
Lower A means lower n for dominant $m = 1$ modes.
Quasi-periodic growth of a single dominant helical mode \((m=1/n=4)\)

Spectral index \(N_s\)

Characteristic of the QSH RFP state: lower dominant mode number (mostly \(n = 4\)) and higher amplitudes than in other RFPs.
Dominant helical structure observed with high-speed camera

Filament structure indicates simple structure of plasma parameters \rightarrow effect of lowering A
Possibility of rotating Helical Ohmic Equilibrium state
- A large-scale magnetic field profile change -

- Quasi-periodic oscillation between reversed and non-reversed states
- Similar large-scale oscillatory behavior in B_r and B_θ

![Graph showing time series data of magnetic fields and plasma current](image.png)
Measured field profile agrees well with Helical Ohmic Equilibrium state with closed helical flux surfaces

\[B = B^{(0,0)} + b \]

Theory

Numerical solution of Helically symmetric RFP equilibrium

Flux surfaces recovered!

Experiments

\[B^{(0,0)} : \text{Low-frequency (} f < 2 \text{kHz}) \text{ component} \]

\[b : b = B - B^{(0,0)} \]

Excellent agreement may be an indication of rotating Helical Ohmic Equilibrium state

R. Paccagnella, IEA / RFP Workshop 2000
3D MHD simulation can reproduce major MHD characteristics of RELAX plasmas.

Fig. 1: F vs. time, light blue curve refers to the ideal wall while the other curves are the resistive wall cases.
MHD simulation reproduces quasi-periodic oscillation of the dominant $m=1/n=4$ mode

Oscillating behavior of the tearing part of the spectrum ($m=1/n=4, 5, \ldots$) in RELAX can be compared with 3D MHD simulation with ideal wall boundary condition.
- due to mode rotation
- due to short discharge duration

Fig. 2: Radial mode energy vs. time for the ideal wall simulation.
MHD simulation predicts RWM will be problematic for longer pulse operation

Fig. 6: Radial mode energy vs. time for the RW simulation with $\tau_w = 0.02$ ($P=30$, $S=3 \times 10^4$).
Experimental implication of RWM in RELAX

Br (m=1/n=2) measured on the outer surface of the vacuum vessel.

Growth rate vs. na/R of external kink modes for α-Θ₀ model profiles

\[\frac{\tilde{B}_r(a)}{B_p(a)} \approx 1 - 1.5\% \]

\[\Rightarrow I_p \text{ starts decreasing} \]
MHD control plans in RELAX

- Discharge performance improvement:
 - $I_p \sim 100\text{kA}$, $\tau: \sim 2\text{ms} \Rightarrow 5\text{ms}$ (within present capability)
 - Static helical perturbation
 Further improvement will require improved magnetic boundary:
 - feedback control system

Another means for confinement improvement (current profile control, e.g.) may be necessary
Conclusion

• RFP plasma with MHD properties characteristic to low-A configuration attained in RELAX
• Dominant mode with lower n realized
• Simple helical structure observed
• Possible Helical Ohmic Equilibrium state demonstrated
• 3D MHD simulation could reproduce most of the characteristics
Growth of dominant mode is related to mode rotation

m=1/\(n=4\) mode behavior:

- Longer QSH period for slower rotation
- Shorter QSH period with higher spectral index \(N_s\) for faster rotation