

US-Japan Workshop on MHD control, Magnetic Island and Rotation, 11/23-25, 2008 (UT at Austin).

MHD Issues in Low-A RFP Machine RELAX

S.Masamune, A.Sanpei, R.Ikezoe, T.Onchi,
K.Oki, T.Yamashita, H.Shimazu, H.Himura,
N.Nishino¹⁾, R.Paccagnella²⁾

Kyoto Institute of technology, Kyoto, Japan

¹⁾*Hiroshima University, Higashi-hiroshima, Japan*

²⁾*Consorzio RFX, Padova, Italy*

REversed field pinch of Low-Aspect-ratio eXperiment

- $R/a = A = 2$
(51 cm/25 cm)
- Optimization in progress

Kyoto Institute of Technology

Normal RFP discharges established

Goal of RELAX experiment

- Experimental study on advantages of low- A RFP configuration
 - Improved confinement with QSH for achieving high beta
 - Experimental identification of bootstrap current (target parameters: $T_e \sim 300\text{eV}$, $n_e \sim 4 \times 10^{19}\text{m}^{-3}$ at $I_p \sim 100\text{kA}$)

Tearing and RWM play important roles in the RFP

- formation and sustainment of the configuration through nonlinear MHD
- of general interest as a control problem of highly nonlinear system

Lower A means lower n for dominant $m = 1$ modes

Quasi-periodic growth of a single dominant helical mode ($m=1/n=4$)

Spectral index N_s

$$N_s = \left[\sum_{n=n_{\min}}^{n_{\max}} \left(\frac{b_{1,n}^2}{\sum_n b_{1,n}^2} \right)^2 \right]^{-1}$$

**Characteristic of the QSH RFP state:
lower dominant mode number (mostly
 $n = 4$) and higher amplitudes than in
other RFPs.**

Dominant helical structure observed with high-speed camera

Simulated helix
with $m=1/n=4$

Filament structure indicates simple structure of plasma parameters → effect of lowering A

Possibility of rotating Helical Ohmic Equilibrium state - A large-scale magnetic field profile change -

- Quasi-periodic oscillation between reversed and non-reversed states
- Similar large-scale oscillatory behavior in B_r and B_θ

Measured field profile agrees well with Helical Ohmic Equilibrium state with closed helical flux surfaces

$$B = B^{(0,0)} + b$$

Theory

Numerical solution of Helically symmetric RFP equilibrium

Flux surfaces recovered!

R. Paccagnella, IEA / RFP Workshop 2000

Experiments

$B^{(0,0)}$: Low-frequency ($f < 2\text{kHz}$) component

$$b : b = B - B^{(0,0)}$$

Radial profiles ($0.6 < r/a < 1.0$)

Excellent agreement may be an indication of rotating Helical Ohmic Equilibrium state

3D MHD simulation can reproduce major MHD characteristics of RELAX plasmas

Fig.1: F vs. time, light blue curve refers to the ideal wall while the other curves are the resistive wall cases.

MHD simulation reproduces quasi-periodic oscillation of the dominant $m=1/n=4$ mode

Oscillating behavior of the tearing part of the spectrum ($m=1/n=4,5,..$) in RELAX can be compared with 3D MHD simulation with ideal wall boundary condition.

- due to mode rotation
- due to short discharge duration

Fig.2: Radial mode energy vs. time for the ideal wall simulation.

MHD simulation predicts RWM will be problematic for longer pulse operation

Fig.6: Radial mode energy vs. time for the RW simulation with $\tau_w = 0.02$ ($P=30, S=3 \cdot 10^4$).

Experimental implication of RWM in RELAX

Br (m=1/n=2) measured
on the outer surface of
the vacuum vessel

Growth rate vs. na/R of external kink modes for α - Θ_0 model profiles

$\tilde{B}_r(a) / B_p(a) \approx 1 - 1.5\%$
 $\Rightarrow I_p$ starts decreasing

MHD control plans in RELAX

- Discharge performance improvement:
 - $I_p \sim 100\text{kA}$, $\tau: \sim 2\text{ms} \Rightarrow 5\text{ms}$ (within present capability)

- **Static helical perturbation**

Further improvement will require improved magnetic boundary:

- **feedback control system**

Another means for confinement improvement (**current profile control**, e.g.) may be necessary

Conclusion

- RFP plasma with MHD properties characteristic to low- A configuration attained in RELAX
- Dominant mode with lower n realized
- Simple helical structure observed
- Possible Helical Ohmic Equilibrium state demonstrated
- 3D MHD simulation could reproduce most of the characteristics

Growth of dominant mode is related to mode rotation

$m=1/n=4$ mode behavior:

- Longer QSH period for slower rotation
- Shorter QSH period with higher spectral index N_s for faster rotation

