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The efficacy of feedback stabilization can be well 
addressed in terms of minimal plasma disturbances

• Highly reproducible current-driven RWM 
enables us to explore the RWM 
feedback control in detail
– Due to the irreproducibility of pressure-

driven RWMs, the RWM feedback process 
has not been evaluated thoroughly.

– The RWM feedback control can be 
assessed using a reproducible RWM target 
at q95 ~ 4.

• The feedback stabilization efficacy 
needs to be assessed based on both 
internal and external plasma responses
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Complete feedback stabilization of current-driven 
RWM at q95~4 has been achieved in DIII-D

• Ohmic discharge with high 
current ramp-up rate

• Tools
– Internal coils (“I-coils”): 

Direct Feedback + Dynamic 
error field correction (EFC) 

– External coils (“C-coils”): 
Static EFC

q95~4

Gp=80, τp=0.05 ms

60 msec
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The RWM feedback control loop is fully equipped 
with slow and fast time scale actuators

• Feedback loop (τp << τw)

Power  Supply

Gp,d : Gain τp,d : time constant
where p - proportional, and

d - derivative  
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• Current-driven RWM at q95 ~ 4 was completely 
stabilized by the RWM feedback control with Gp only.

• The use of derivative gains (Gd=10Gp) expanded the 
stable range of proportional gains. 
– Reducing a phase lag in time avoids any mismatch between 

RWM and applied field. 
– High gain scan results suggest the contributions of the I-coils 

necessary for DEFC 

• A phase-shifted n=1 field in the direction of co-Ip
rotation is more effective than in the opposite direction. 

Key results
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The RWM-associated internal structures are  
eliminated by RWM feedback control

Feedback (133018)No feedback (133021)

• RWM-induced edge disturbance is also suppressed.
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The |δTe|max is reduced by more than a 
factor of 2 with optimized feedback

Feedback (133018)No feedback (133021)
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The optimized gain (Gp=80) has been 
found with Gp only

• As the gain approaches the optimal level, the mode 
growth rate decreases as expected.
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Sub-optimal gain is not only less effective in suppressing 
the RWM but also disturbs the plasma edge

Gp Only

• Meanwhile, the edge disturbances are not observed 
at the over-optimal gain (e.g. Gp = 160).

Gp = 20 (133020) Gp = 80 (133018)No feedback (133021)
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Current-driven RWM at q95 ~ 4 was completely 
stabilized by the RWM feedback control with Gp only.

• The use of derivative gains (Gd=10Gp) expanded the 
stable range of proportional gains. 
– Reducing a phase lag in time avoids any mismatch between 

RWM and applied field. 
– High gain scan results suggest the contributions of the I-coils 

necessary for DEFC

• A phase-shifted n=1 field in the direction of co-Ip
rotation is more effective than in the opposite direction. 

Key results
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The use of derivative gain broadened the effective 
gain range for RWM feedback stabilization at  q95~4

• The addition of Gd minimizes the phase lag in time 
between RWM and the applied field.

• A value of Gd =10Gp is chosen to use voltage 
controller ‘effectively’ as current controller, based 
on τd and τL/R of the feedback system.
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Maximum Mode Amplitudes [G] vs Gp

Direct RWM control is the dominant stabilization process, 
while good error field correction is prerequisite

• Similarly finite amplitude of the coil currents at various 
Gp values indicate the EFC portion necessary for 
effective stabilization.

60 msec60 msec
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Maximum Mode Amplitudes [G] vs Gp

Direct RWM control is the dominant stabilization process, 
while good error field correction is prerequisite

• Similarly finite amplitude of the coil currents at various 
Gp values indicate the EFC portion necessary for 
effective stabilization.

60 msec

DEFC

60 msec
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Maximum Mode Amplitudes [G] vs Gp

Direct RWM control is the dominant stabilization process, 
while good error field correction is prerequisite

• From the known DEFC, the portion of the coil current 
necessary for the direct RWM control can be extracted.

Complete stabilization 
= RWM + DEFC

DEFC
RWM

60 msec

Optimized (with no Gd)

Gp = 80, Gd = 0
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Current-driven RWM at q95 ~ 4 was completely 
stabilized by the RWM feedback control with Gp only.

The use of derivative gains (Gd=10Gp) expanded the 
stable range of proportional gains. 
― Reducing a phase lag in time avoids any mismatch 

between RWM and applied field. 
― Similarly finite amplitudes at various gains suggest 

the DEFC portion necessary for effective 
stabilization. 

• A phase-shifted n=1 field in the direction of co-Ip
rotation is more effective than in the opposite direction.

Key results
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A phase-shifted n=1 field in the direction of co-Ip rotation 
is more effective than in the opposite direction.

• A range of preferred toroidal
phase shifts ahead of the 
RWM exists for effective 
feedback

Maximum Mode Amplitudes [G] vs δφFB
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• Slowly growing RWM may play a role of ‘error’ field.
– Once a certain level is reached, the RWM-induced magnetic 

islands are widespread in the outer region of the plasma.
– Such RWM-induced magnetic islands consist of  a mixture of 

poloidal modes (e.g. multiple resonant surfaces).
• In comparison, the EF-driven edge structure may be relevant to a 

pitch-resonant surface inside the plasma (e.g. m/n= 3 (or 2)/1 ?). 
• Meanwhile, the edge disturbances during the sub-optimal gains 

might not have been from the same mechanism, in that
– The edge disturbances are formed in the outermost region 

first, and then propagate inward, as a residual stray field 
increases without having a pitch resonant surface. -> kink?

– BUT, the addition of Gd appears to prevent RWM+EF from 
making edge disturbances. 

Caveats to note
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• Current-driven RWM at q95 ~ 4 was completely 
stabilized by the RWM feedback control.
– An optimized proportional gain (Gp=80) has been 

found without using derivative gain. 
― The use of derivative gains (Gd=10Gp) expanded 

the stable range of proportional gains. 
• Reducing a phase lag in time avoids any 

mismatch between RWM and applied field. 
• Similarly finite amplitudes at various gains 

suggest the DEFC portion necessary for 
effective stabilization. 

• A phase-shifted n=1 field in the direction of co-Ip
rotation is more effective than in the opposite 
direction.

Conclusions
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• The efficacy of the feedback stabilization needs to 
be cautiously assessed based on magnetics alone

• The success of stabilization of the current-driven 
RWM at q95~ 4 is primarily due to the direct RWM 
control, while a good error field correction is 
overlaid.

• Similar feedback performance is expected even for 
the pressure-driven RWM in high-β plasmas, as long 
as the difference of the plasma responses between 
low and high-β plasmas is properly addressed.

Conclusions (cont’d)
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Open question about magnetic islands

• Does a kink mode form 
a magnetic island?

• Is plateau essential for 
magnetic island?

• If so, what degree of 
flatness is necessary ?

• When the δTe becomes 
a tiny ‘wiggle’ without  
plateau, is it still 
magnetic island?

• Should  the inversion 
radius be located at a 
rational surface?  
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