FOM-Institute for Plasma Physics Rijnhuizen
Association Euratom-FOM

Feedback control of ECRH for MHD
mode stabilization on TEXTOR

T

Ny O
Bart Hennen

|ter'n| Tuesday, 25 November, 2008

TU/eLzhga:Thlgv . . .
With contributions from:
E. Westerhof, M. de Baar, J.W. Oosterbeek, G.W. Spakman,
g JULICH D. De Lazzari, A. Burger, E.M.M. Demarteau, P.W.J.M. Nuij,
M. Steinbuch, and the TEXTOR-Team




MHD stabilization o s
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» QObijective: Control of MHD modes
- Magnetic islands (& sawteeth)
- Preserve confinement & avoid disruptions

» Efficient & adequate ECRH / ECCD:
- Fast & accurate mode detection
- Alignment of ECRH power dep. w.r.t. mode (“tracking”)
- Synchronize power modulation w.r.t. mode rotation
- ‘Power-efficient’ ECRH application

 Feedback control:

guarantees fast response, accuracy, robustness and
stability



TEXTOR ECRH installation

» Major components:

- DED generation of magnetic islands
- Fast & flexible launcher

- Gyrotron 140 GHz, 800 kW, 10 s

- Line-of-sight ECE diagnostic

- Real-time control & DAQ electronic hardware




TEXTOR ECRH installation
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Intermezzo: Launcher b

Analysis of dynamics using Frequency Response Function
measurements

Design of feedback + feedforward control structure
(PID + Lead/Lag + Low-pass filter)
Analysis of stability robustness & performance in simulation

Real-time control implementation & performance assessment on
mock-up of the actual launcher
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Intermezzo: Launcher
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Feedback + feedforward control:
» Speed of response: ~ 56 ° rotation sweep in 100 [ms] ©
 Positioning accuracy: 0.6°©

 Bandwidth £ 10 Hz



Intermezzo: Line-of-sight ECE diagnostic Y

 Line-of-sight ECE diagnostic:
- Dedicated feedback control sensor

* Measure ECE spectrum in the
transmission path of ECRH beam:

- Frequency selective decoupling
- Power separation

« Advantages:

- Actuator & sensor operate in same metric frame

(refractive properties identical)
- No need for plasma eq. reconstruction / absolute

coordinate mapping



TEXTOR ECRH installation
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Island recognition without ECRH

Island recognition in
ECE spectrum

- DED induced m/n = 2/1
Island

- launcher elevation @ 9°

- Island recognized
between 135.5 GHz &
141.5 GHz
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Island recognition with ECRH (200 kW CW%{ 7 @
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* Island recognition in ECE spectrum

- DED induced m/n = 2/1 island
- launcher elevation @ 2°
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Derivation of island control parameters

* |sland control parameters:

Radial location & rotation frequency / phase

* Generate reference trajectories for launcher and
gyrotron in real-time

 Available hard- & software
— NI PXI DAQ & RTC (FPGA based, Labview)
— MATLAB / Simulink



Derivation of island control parameters

Fast mode detection from ECE
fluctuations:

1. Subtract running averages =~ X,.=X, —==—

2. Normalize X,, —X,.=X,./1X,.]|

n

3. Correlate C.,= > X,.-X,,
] N

4. Localized between channels for
which correlator is below threshold



Derivation of island control parameters

Fast mode detection from ECE fluctuations:
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Real-time implementation: discrete FIR filter (running sum
low-pass filter)



Derivation of island control parameters

Instantaneous frequency detection from ECE fluctuations:

1. Hilbert transform of real-valued function:
Fourier Transform = 90° phase shift = Inverse FFT

X, ()= X(@)
2. Analytical signal: ) <-Im -

X(t):Xr(t)+lX(t) — —Xi() [ pd .
3. Instantaneous phase: (/%L\Re

A1) = tanl( X J (/
X, () <)
4. Instantaneous frequency:
o AHEneY i
fi=--2

27 dt
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Derivation of island control parameters W @

Instantaneous frequency detection from ECE fluctuations:

Textor shot 107892 : Inst. freq. for inline ECE channel 1 - 5
derived from Hilbert transform

Textor shot 107892 : Spectrum inline ECE channel 4
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« Synchronization of ECRH power modulation w.r.t. island
rotation frequency - Repetitive Control



MATLAB / Simulink modeling

« Simplified plasma equilibrium (circular)
« Perturbed Electron Temperature profiles
» Synthetic line-of-sight ECE data

* Modified Rutherford equation:
— Including efficiency terms for Heating & Current Drive

— Including radial misalignment, deposition profiles, duty
cycle modulation

 Trajectory generators (based on mode/freq. detection)
» Actuator models (launcher & gyrotron)
* Feedback loops



MATLAB / Simulink modeling

Inline ECE diagnostic
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MATLAB / Simulink modeling fer £

ANAAANAANAAAAAAAAT ¢ Launcher elev.: ~ -9°
VAN e Island width: ~ 8 cm
“ « Bt=225T, Ip=300KkA
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Launcher elev. scan:
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Summary & outlook Y -

« TEXTOR well equiped for MHD feedback control
experiments (DED, optimally controlled launcher, line-of-
sight ECE)

« Capabilities of line-of-sight ECE diagnostic for integrated
mode detection, phase tracking and ECRH launcher
steering demonstrated

« Fast island detection algorithmes based on correlation
techniques applied

 Instantaneous frequency & phase detection for
synchronized gyrotron modulation applied

« Simulink model development for model-based controller
design



Summary & outlook

What comes next:

 Integrated feedback control simulation
 Installation / implementation control hardware

« Experimental validation of the control algorithms



Thanks for your attention!
QUESTIONS?



