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Background and Motivation

e Tearing mode stability (magnetic islands) in plasmas with sheared rotation,
even classical tearing mode as | understand, gets attention experimentally

e C(lassical tearing mode stability including plasma rotation was studied by,
for example,

— Asymptotic matching theory
[l. Hofmann, Plasma Phys. 17, 143 (1975).]

[R. B. Paris and W. N-C. Sy, Phys. Fluids 26, 2966 (1983).]
[X. L. Chen and P. J. Morrison, Phys. Fluids B 2, 495 (1990).]

— Global numerical calculation
[R. Coelho, E. Lazzaro, Phys. Plasmas 14, 012101 (2007).]

— Numerical solution to the inner-layer equation
[S. Tokuda, Nucl. Fusion 41, 1037 (2001).]

e |n this talk,

— the basis of asymptotic matching technique for rotating plasmas is presented

— the inner-layer equation is solved numerically by imposing the asymptotic
form derived for rotating plasmas
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Stability analysis via asymptotic matching technique
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In the stability analysis via asymptotic matching technique, we divide the
plasma into

— Outer region: linearized MHD equation is solved dropping plasma inertia and
resistivity (Newcomb equation)

— Inner region: thin layer around a rational surface where plasma inertia and
resistivity are retained and play a role since line-bending becomes weak there
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[ typical scale length for the expansion is J
provided by plasma resistivity

Following the above consideration, effects of plasma flow might be taken
into account through changes of the solution to

— the Newcomb equation, namely, A’
— the inner-layer equation
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Low-beta reduced MHD equations

e We adopt large-aspect-ratio and low-beta reduced MHD equations:

[ dU
— =-=VJ — 7
| @ [ v=2zXVop
P B . .
£+V||¢=HJ B=Vyxz+ Dbz
where
2 d 9, =7V \V4
v=vip  S-Z.p .91 =2V f x Vg
t ta :1(8f89_8f89)
J =V V)= 68—<—[w, ] r \or 00 90 or
— Normalization
e length a, magnetic field By, mass density Qo : const.
 Alfvén velocity wva := By/\/ftopo » time 7) :=a/va
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Outer-region equation

Linearized low-beta reduced MHD is adopted:

Vi 0 . —iTm(UgVi —U}) —ime (% + %) V2 — i*n;J: .
VAN —ims (&+7) —te v y

where time dependence ¢ is assumed

In the outer region, the growth rate and resistivity are dropped, while the
convection term is retained
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The convection term can change A’ orthe energy available to drive the
tearing instability

In the following, let us consider only the plasma flow which becomes zero
at the mode-resonant surface:  This can be assumed without loss of
generality for fixed boundary conditions
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Asymptotic behavior from the outer region

e Substituting
(]0:(,00:1?!3 (1—|—(,01£U—|—(,02332‘|—)
p=a% (14 vz +pa’+-)

into the outer-region equations, we find that the terms at each order of @
nicely balance when o =g

e The leading order gives us
a=20,1
ers(1/q)s

e Atthe next order, we find that o = 0 cannot be adopted, and we
obtain one of the independent solution as

v =@ (1+ g1z + @z’ +--)
=1+ + g’ + -
 The coefficients of the higher-order terms can be determined successively
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Second independent solution
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The outer-region equations can be summarized in a single equation of the

form: o a0

3z P(r )— +Q(r)y =
which is the same as the Newcomb equation in the absence of plasma

rotation

e e ® - e ® -~

resonant surface remains as a regular singularity

By examining the coefficients P(r) and Q(r), we find that the mode-

Therefore, we can construct the second independent solution by a
conventional method to obtain the Frobenius series solution

Then the outer solution is expressed as

[ 1
Y = ¥o [1+(@1-|-T—)xlIl|33|---—|—Ai(x-|—¢1$2_|_...)

@b:l—l-(lh ):cln|sc| —I—Ai(g;—|—1/)1x2_|_...)

-
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Inner-layer equation

Let us approximate the equilibrium quantities by linear functions around
the mode-resonant surface in the reduced MHD equations:

—

(7_|_ 1mvesx) V= 1mUOS(p e (1) 22 4 — im.J!
_ T's T's q/q T's
("y—!— lmvesz‘ Y= —ime (i‘ rp +nViy
L\ s ) \q/
Assuming a stretched coordinate and a frequency by
X =n*X
y=7T

and substituting them into the above equations, we find that the
convection term, line-bending term and resistive term balance to each
other when we choose

1
Then the inner-layer equations are obtained as

— . ! 2 / 2
(H 1mvng) ;1);02 _ ime (1) X;};@ and line-bending terms
_ s 1/ becomes dominant, which
. !/
(F N l'm’UésX) ¥ = —ime (1) X+ dng are retained in the outer-
_ ry qa/ dX \_region equation
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Asymptotic behavior from the inner layer

Substituting
=X *(1+OX '+ X 2 +--)
[ =X (1—|-\IJ1X_1-|-\112X_2+“')
into the inner-layer equations, we find that the terms at each order of
nicely balance when

a=p

The leading order gives us
f=0-1
Vb, c.f. ratio from the outer solution:

er(1/g)! o = _%
By balancing order by order, we obtain ers(1/4);

{ p = ®, (1+---+aiX+---) c.f. Outer solution:

1

= 1+ (v +— ) zln|z| -+ AT (z + 2+ - -

=1+ +a" X+ o= (vt ) ot 4 st )
1

z/;:1+(u‘)l+E)m1n|x|---+Ai(m+¢lx2+-~-)

The asymptotic behavior of inner solution agrees with the outer solution,
therefore, the asymptotic matching technique can be used
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Numerical solution to the inner-layer equation

 Theinner-layer equations are solved as an eigenvalue problem under
boundary conditions of the third kind:

—

dy _ P, ¥ ®, has been already determined
dX c+ X 0
1 4 by the asymptotic analysis of inner-
Y — Y _ layer equation
L dX o+ X

e Anexamplefor ¢c=5 ; C is inversely proportional to A’, to be
given by external solution

 The flow velocity is sub-Alfvenic
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* Increase of the growth rate due to the shear flow is observed

2008/11/23 US-Japan Workshop on MHD Control, Magnetic Islands and Rotation (Univ. Texas at Austin, Nov.23-25, 2008) 10



Equilibrium for global calculation in slab geometry

* \Velocity and magnetic fields

x
Uy (33) — ’UyOL— Stable to Kelvin-Helmholtz modes without magnetic field
v
B,(z) = B,y tanh L— Tearing mode is unstable for k, < 1 without flow
B
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Eigenvalue
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 Growth rate icreaeses as the flow is increased
e lItscalesas ~ oc n*® forsmall 7

2008/11/23 US-Japan Workshop on MHD Control, Magnetic Islands and Rotation (Univ. Texas at Austin, Nov.23-25, 2008)

12



2008/11/23

Summary

Asymptotic matching is possible in the presence of sheared plasma

rotation:
— The rotation is assumed to be zero at the mode-resonant surface

* We can assume this without loss of generality since the finite rotation
speed at the resonant surface just introduces a finite frequency of the
mode under fixed boundary condition

— Outer solution can be expressed by a Frobenius series since the mode-
resonant surface remains as a regular singularity even if a plasma rotation is

included
— Asymptotic series solution to the inner-layer equation is shown to match onto
the outer solution

* The convection term as well as the line-bending term become dominant
away from the mode-resonant surface

The inner-layer equation was solved numerically under the boundary
condition of the third kind, which was derived from the asymptotic form

~fF+rhhA tnimnAar laviavr caliidqiAan
Ul LHIC it ~iayci suluLivuti

It was shown that the growth rate of the tearing mode becomes larger by
increasing the sheared rotation
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