

Effects of shear flow on tearing mode stability

M. Furukawa

Grad. Sch. Frontier Sci., Univ. Tokyo

with T. Nakatsu, S. Tokuda and Z. Yoshida

Outline

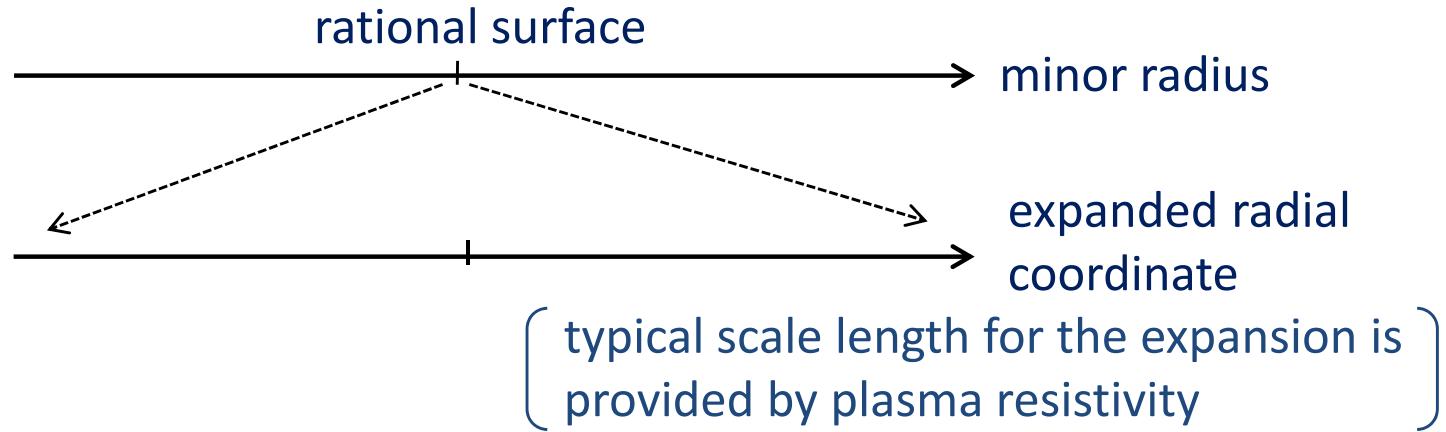
- I. Background and motivation
- II. Asymptotic matching
- III. Numerical solution to inner-layer equation
- IV. Numerical solution in slab geometry without matching as reference
- V. Summary

Background and Motivation

- Tearing mode stability (magnetic islands) in plasmas with sheared rotation, even classical tearing mode as I understand, gets attention experimentally
- Classical tearing mode stability including plasma rotation was studied by, for example,
 - Asymptotic matching theory
 - [I. Hofmann, *Plasma Phys.* **17**, 143 (1975).]
 - [R. B. Paris and W. N-C. Sy, *Phys. Fluids* **26**, 2966 (1983).]
 - [X. L. Chen and P. J. Morrison, *Phys. Fluids B* **2**, 495 (1990).]
 - Global numerical calculation
 - [R. Coelho, E. Lazzaro, *Phys. Plasmas* **14**, 012101 (2007).]
 - Numerical solution to the inner-layer equation
 - [S. Tokuda, *Nucl. Fusion* **41**, 1037 (2001).]
- In this talk,
 - the basis of asymptotic matching technique for rotating plasmas is presented
 - the inner-layer equation is solved numerically by imposing the asymptotic form derived for rotating plasmas

Stability analysis via asymptotic matching technique

- In the stability analysis via asymptotic matching technique, we divide the plasma into
 - Outer region: linearized MHD equation is solved dropping plasma inertia and resistivity (Newcomb equation)
 - Inner region: thin layer around a rational surface where plasma inertia and resistivity are retained and play a role since line-bending becomes weak there



- Following the above consideration, effects of plasma flow might be taken into account through changes of the solution to
 - the Newcomb equation, namely, Δ'
 - the inner-layer equation

Low-beta reduced MHD equations

- We adopt large-aspect-ratio and low-beta reduced MHD equations:

$$\begin{cases} \frac{dU}{dt} = -\nabla_{\parallel} J \\ \frac{\partial \psi}{\partial t} + \nabla_{\parallel} \varphi = \eta J \end{cases} \quad \begin{pmatrix} \mathbf{v} = \hat{\mathbf{z}} \times \nabla \varphi \\ \mathbf{B} = \nabla \psi \times \hat{\mathbf{z}} + B_0 \hat{\mathbf{z}} \end{pmatrix}$$

where

$$U = \nabla_{\perp}^2 \varphi$$

$$\frac{d}{dt} = \frac{\partial}{\partial t} + [\varphi, \quad]$$

$$[f, g] = \hat{\mathbf{z}} \cdot \nabla f \times \nabla g$$

$$J = \nabla_{\perp}^2 \psi$$

$$\nabla_{\parallel} := \varepsilon \frac{\partial}{\partial \zeta} - [\psi, \quad]$$

$$= \frac{1}{r} \left(\frac{\partial f}{\partial r} \frac{\partial g}{\partial \theta} - \frac{\partial f}{\partial \theta} \frac{\partial g}{\partial r} \right)$$

– Normalization

- length a , magnetic field B_0 , mass density ρ_0 : const.
- Alfvén velocity $v_A := B_0 / \sqrt{\mu_0 \rho_0}$, time $\tau_A := a / v_A$

Outer-region equation

- Linearized low-beta reduced MHD is adopted:

$$\gamma \begin{pmatrix} \nabla_{\perp}^2 & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \begin{pmatrix} -\frac{im}{r}(v_{\theta}\nabla_{\perp}^2 - U'_0) & -im\varepsilon\left(\frac{n}{m} + \frac{1}{q}\right)\nabla_{\perp}^2 - \frac{imJ'}{r} \\ -im\varepsilon\left(\frac{n}{m} + \frac{1}{q}\right) & -\frac{imv_{\theta}}{r} + \eta\nabla_{\perp}^2 \end{pmatrix} \begin{pmatrix} \varphi \\ \psi \end{pmatrix}$$

where time dependence $e^{\gamma t}$ is assumed

- In the outer region, the growth rate and resistivity are dropped, while the convection term is retained

$$\begin{cases} -\frac{im}{r}(v_{\theta}\nabla_{\perp}^2 - U'_0)\varphi + \left[-im\varepsilon\left(\frac{n}{m} + \frac{1}{q}\right)\nabla_{\perp}^2 - \frac{imJ'}{r}\right]\psi = 0 \\ -im\varepsilon\left(\frac{n}{m} + \frac{1}{q}\right)\varphi - \frac{imv_{\theta}}{r}\psi = 0 \end{cases}$$

- The convection term can change Δ' or the energy available to drive the tearing instability
- In the following, let us consider only the plasma flow which becomes zero at the mode-resonant surface: This can be assumed without loss of generality for fixed boundary conditions

Asymptotic behavior from the outer region

- Substituting

$$\begin{cases} \varphi = \varphi_0 x^\beta (1 + \varphi_1 x + \varphi_2 x^2 + \dots) \\ \psi = x^\alpha (1 + \psi_1 x + \psi_2 x^2 + \dots) \end{cases}$$

into the outer-region equations, we find that the terms at each order of x nicely balance when $\alpha = \beta$

- The leading order gives us

$$\begin{aligned} \alpha &= 0, 1 \\ \varphi_0 &= -\frac{v'_{\theta s}}{\varepsilon r_s (1/q)'_s} \end{aligned}$$

- At the next order, we find that $\alpha = 0$ cannot be adopted, and we obtain one of the independent solution as

$$\begin{cases} \varphi = \varphi_0 (1 + \varphi_1 x + \varphi_2 x^2 + \dots) \\ \psi = 1 + \psi_1 x + \psi_2 x^2 + \dots \end{cases}$$

- The coefficients of the higher-order terms can be determined successively

Second independent solution

- The outer-region equations can be summarized in a single equation of the form:

$$\frac{d^2\psi}{dr^2} + P(r)\frac{d\psi}{dr} + Q(r)\psi = 0$$

which is the same as the Newcomb equation in the absence of plasma rotation

- By examining the coefficients $P(r)$ and $Q(r)$, we find that the mode-resonant surface remains as a regular singularity
- Therefore, we can construct the second independent solution by a conventional method to obtain the Frobenius series solution
- Then the outer solution is expressed as

$$\begin{cases} \varphi = \varphi_0 \left[1 + \left(\psi_1 + \frac{1}{r_s} \right) x \ln |x| \cdots + A^\pm (x + \psi_1 x^2 + \cdots) \right] \\ \psi = 1 + \left(\psi_1 + \frac{1}{r_s} \right) x \ln |x| \cdots + A^\pm (x + \psi_1 x^2 + \cdots) \end{cases}$$

Inner-layer equation

- Let us approximate the equilibrium quantities by linear functions around the mode-resonant surface in the reduced MHD equations:

$$\begin{cases} \left(\gamma + \frac{imv'_{\theta s}}{r_s} x \right) \nabla_{\perp}^2 \varphi = \frac{imU'_{0s}}{r_s} \varphi - im\varepsilon \left(\frac{1}{q} \right)'_s x \nabla_{\perp}^2 \psi - \frac{imJ'_s}{r_s} \psi \\ \left(\gamma + \frac{imv'_{\theta s}}{r_s} x \right) \psi = -im\varepsilon \left(\frac{1}{q} \right)'_s x \varphi + \eta \nabla_{\perp}^2 \psi \end{cases}$$

- Assuming a stretched coordinate and a frequency by

$$\begin{cases} X = \eta^{\alpha} x \\ \gamma = \eta^{\beta} \Gamma \end{cases}$$

and substituting them into the above equations, we find that the convection term, line-bending term and resistive term balance to each other when we choose

$$\alpha = \beta = \frac{1}{3}$$

- Then the inner-layer equations are obtained as

$$\begin{cases} \left(\Gamma + \frac{imv'_{\theta s}}{r_s} X \right) \frac{d^2 \varphi}{dX^2} = -im\varepsilon \left(\frac{1}{q} \right)'_s X \frac{d^2 \psi}{dX^2} \\ \left(\Gamma + \frac{imv'_{\theta s}}{r_s} X \right) \psi = -im\varepsilon \left(\frac{1}{q} \right)'_s X \varphi + \frac{d^2 \psi}{dX^2} \end{cases}$$

At large X , the convection and line-bending terms becomes dominant, which are retained in the outer-region equation

Asymptotic behavior from the inner layer

- Substituting

$$\begin{cases} \varphi = \Phi_0 X^{-\alpha} (1 + \Phi_1 X^{-1} + \Phi_2 X^{-2} + \dots) \\ \psi = X^{-\beta} (1 + \Psi_1 X^{-1} + \Psi_2 X^{-2} + \dots) \end{cases}$$

into the inner-layer equations, we find that the terms at each order of nicely balance when

$$\alpha = \beta$$

- The leading order gives us

$$\beta = 0, -1$$

$$\Phi_0 = -\frac{v'_{\theta s}}{\varepsilon r_s (1/q)'_s}$$

c.f. ratio from the outer solution:

$$\varphi_0 = -\frac{v'_{\theta s}}{\varepsilon r_s (1/q)'_s}$$

- By balancing order by order, we obtain

$$\begin{cases} \varphi = \Phi_0 (1 + \dots + a^\pm X + \dots) \\ \psi = 1 + \dots + a^\pm X + \dots \end{cases}$$

c.f. Outer solution:

$$\begin{cases} \varphi = \varphi_0 \left[1 + \left(\psi_1 + \frac{1}{r_s} \right) x \ln |x| \dots + A^\pm (x + \psi_1 x^2 + \dots) \right] \\ \psi = 1 + \left(\psi_1 + \frac{1}{r_s} \right) x \ln |x| \dots + A^\pm (x + \psi_1 x^2 + \dots) \end{cases}$$

- The asymptotic behavior of inner solution agrees with the outer solution, therefore, the asymptotic matching technique can be used

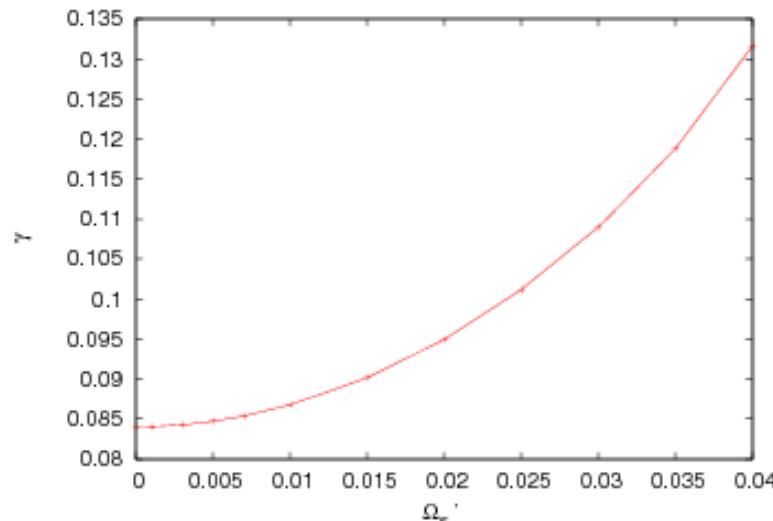
Numerical solution to the inner-layer equation

- The inner-layer equations are solved as an eigenvalue problem under boundary conditions of the third kind:

$$\begin{cases} \frac{d\varphi}{dX} = \Phi_0 \frac{\psi}{c + X} \\ \frac{d\psi}{dX} = \frac{\psi}{c + X} \end{cases}$$

Φ_0 has been already determined by the asymptotic analysis of inner-layer equation

- An example for $c = 5$; c is inversely proportional to Δ' , to be given by external solution
- The flow velocity is sub-Alfvenic



Limit approaching zero flow must be understood carefully

- Increase of the growth rate due to the shear flow is observed

Equilibrium for global calculation in slab geometry

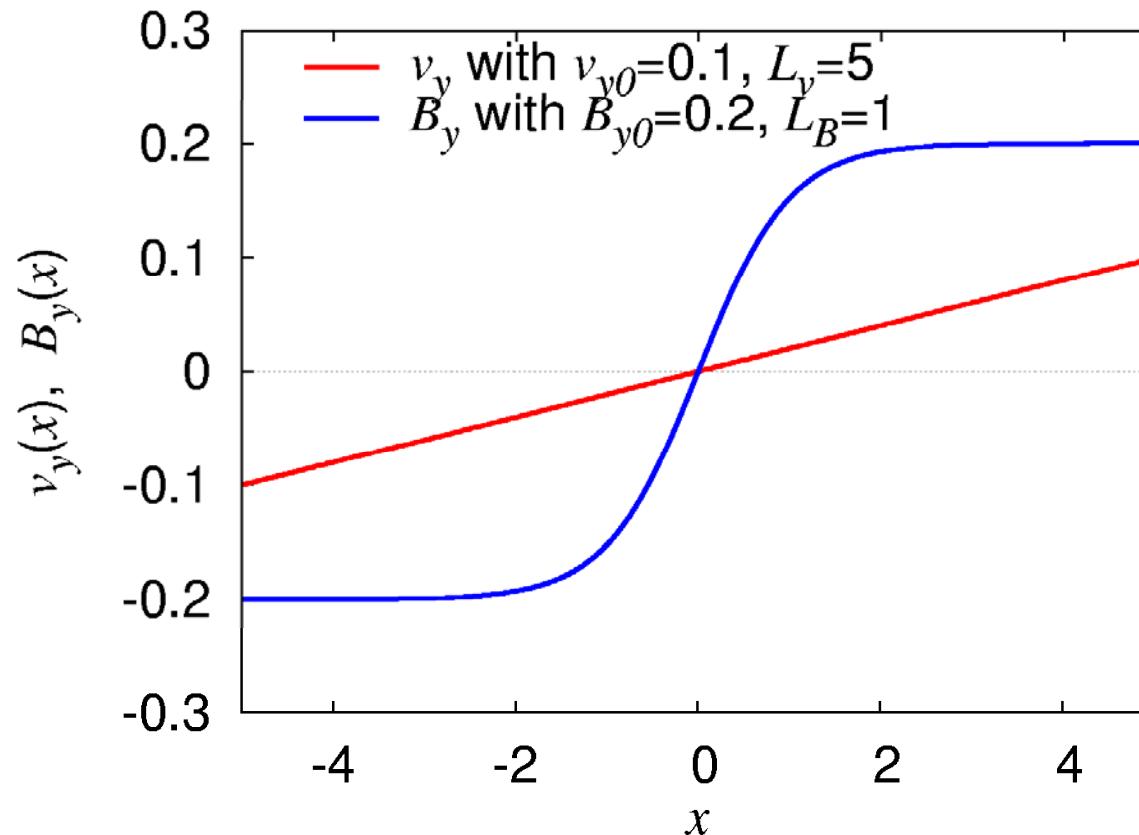
- Velocity and magnetic fields

$$v_y(x) = v_{y0} \frac{x}{L_v}$$

Stable to Kelvin-Helmholtz modes without magnetic field

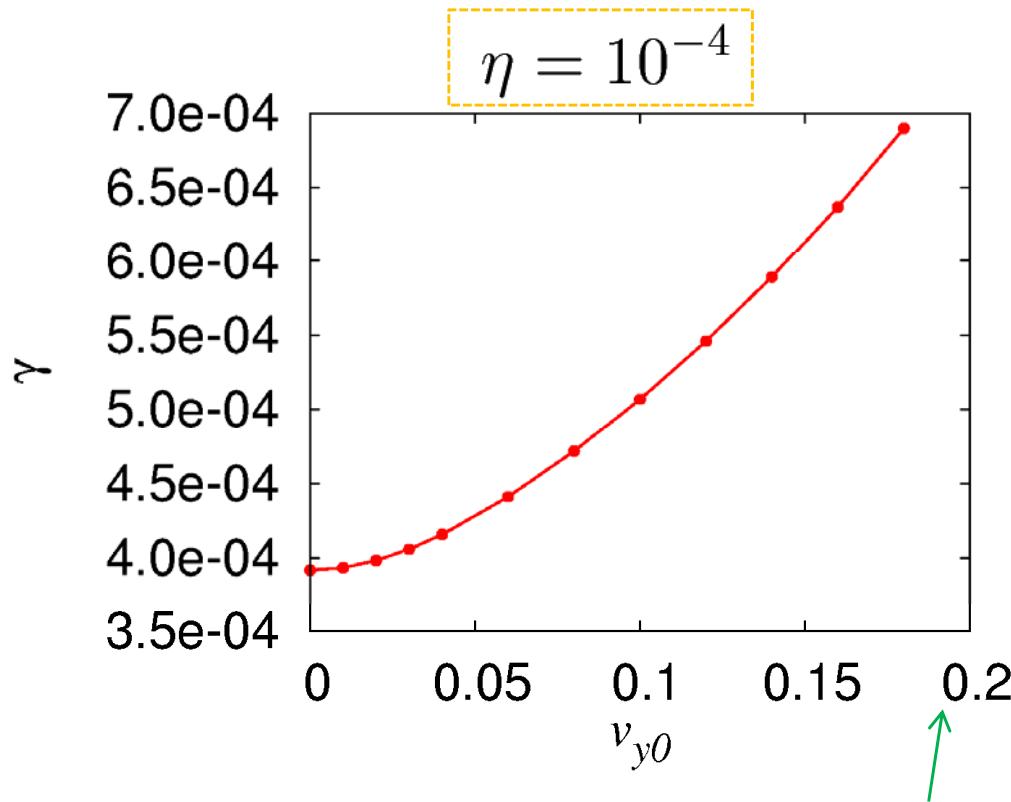
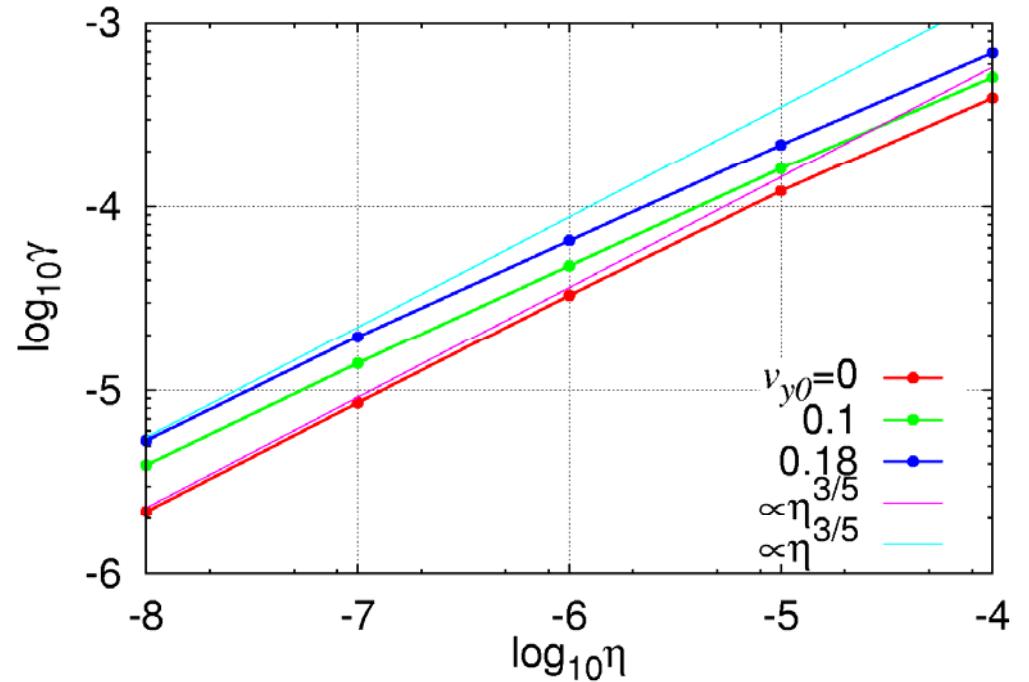
$$B_y(x) = B_{y0} \tanh \frac{x}{L_B}$$

Tearing mode is unstable for $k_y < 1$ without flow



Eigenvalue

$$k_y = 0.9$$



Sub-Alfvenic flow
in the whole domain

- Growth rate increases as the flow is increased
- It scales as $\gamma \propto \eta^{3/5}$ for small η

Summary

- Asymptotic matching is possible in the presence of sheared plasma rotation:
 - The rotation is assumed to be zero at the mode-resonant surface
 - We can assume this without loss of generality since the finite rotation speed at the resonant surface just introduces a finite frequency of the mode under fixed boundary condition
 - Outer solution can be expressed by a Frobenius series since the mode-resonant surface remains as a regular singularity even if a plasma rotation is included
 - Asymptotic series solution to the inner-layer equation is shown to match onto the outer solution
 - The convection term as well as the line-bending term become dominant away from the mode-resonant surface
- The inner-layer equation was solved numerically under the boundary condition of the third kind, which was derived from the asymptotic form of the inner-layer solution
- It was shown that the growth rate of the tearing mode becomes larger by increasing the sheared rotation