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ECCD or ECRH?

« ECCD and ECRH are proven to stabilize NTMs.

« ECRH is proven experimentally to be the dominant effect for island
suppression in TEXTOR and T-10;

 Experiments on middle-large size tokamaks (DIII-D, JT-60, ASDEX)
showed the same effect to be negligible compared to ECCD;

 In AUG a previous theoretical model (Yu, PPCF. 40, 1998)
estimated ECRH to be more effective than ECCD; Experiments so
far haven’t provided yet a clear confirmation;

* Predictions for NTMs stabilization in ITER are currently not including
the ECRH contribution.

— More theoretical work to assess the validity of this approach is needed!
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The model: assumption and limits
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The model: assumption and limits

Assuming a Gaussian distribution for the power deposition profile, with
Waep ~ Wep @Nd Ty ~ Ty

, 32u,r, Pln .
AR B,uo A Frocd (W, Ty = T4, D)
pS

W

dep

IF:
— The effect of misalignment depends weakly on w*=w/w;
— The effect of modulation does not depend on rg-rye,;

The geometrical efficiency can be factorized into three figures of merit:

*

|:H,CD ~ I\IH,CD (W*’rdep = rS)GH ,CD (W ’rs - rdep)l\/lH,CD (V\7 1D)

with: My o(W,D=1)=1 GH’CD(W*,rS:rdep):]_
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ECCD: Benchmark with Literature:
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ECCD: Deposition location

Around the separatrix ECCD is
destabilizing the island;

For “large” islands
destabilization can reach the
of the G(ry);

GCD

At ry=0.3, Gy Is reduced by

For “small” islands the trend is ~
the real part of the plasma
dispersion function.
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ECRH: Deposition location
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ECCD: Modulating the Power 4
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ECRH: Modulating the Power
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ECCD vs. ECRH: The Power Efficiency

, 32u,r, B .
Ay oo = B/uo — Ho’CD“ Fy w1 = rdep’D)
pS
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dep

. Forw*=1,F,~F,, so that If.sAlH ,CD L] M4 co
2 .
,7H — 3 Wdep JS ,7 o Iﬂ
8TRNKkx T, N

 "n"is the efficiency with which the power generates a current perturbation either
Inductively, through perturbation of a temperature, or non-inductively, by direct

current drive.

[KAJMW] Neo NH
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Atw* =1, F-p=Fg;

Ncp IS decreasing quadratically for
w>>w* while N, is decreasing
linearly for w<<w* ;
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Atw* =1, F-p=Fg;

Ncp IS decreasing quadratically for
w>>w* while N, is decreasing
linearly for w<<w* ;

Modulation is mostly relevant in the
region where current drive is
dominant.



...and the winner 1s? The case of ITER

Log(NcpFcp/ NKFY) IN ITER, Scenario 2

Typical parameters (Front steering):

P(MW) Ip (MA)  wy, (cm) Nep Ny

13.3 0.76 4.9 5.74 0.4

nCFCD> NuFy

On - Time %

* For a saturated 3/2 island (about
12.5cm), ECCD appears ~ 4.5
times more efficient than ECRH;
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Conclusions and Outlooks

» High accuracy required for ECCD localization:
—  Atrge, ~0.3 max(w,w 4,) Gep is reduced by ~60% while
— Gy only by ~50%;
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Conclusions and Outlooks

High accuracy required for ECCD localization:
—  Atrge, ~0.3 max(w,w 4,) Gep is reduced by ~60% while
— Gy only by ~50%;

« Power modulation enhances mainly ECCD efficiency. Best performances are
found:

— At 50% on-time for w*<1,
— At 70% on-time for w*>1;

* The relative merit of ECCD and ECRH depends on n, pFy cp

« ECRH seems to become dominant at w/wge, >>1;

Coming Next:

 D. De Lazzari, E. Westerhof, “On the Merits of Heating and Current Drive for
tearing modes stabilization”, to be submitted to Nucl. Fusion;

« Comparison with experimental data.
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THANK YOU FOR YOUR ATTENTION!
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...and the winner 1s? The case of ITER

Log(nyF/ NepFep) IN ITER, Scenario 2
Typical parameters (Remote steering):
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ECH: Brief Theoretical Description

« T(Q) constant over the magnetic
flux surface;

« Convection effects neglected,;
« Constant diffusion coefficient;

o Steady state conditions.
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Plasma diffusion equation:

S(Q) = _aiv

(@)
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ECH: Brief Theoretical Description

* T(Q) constant over the magnetic  ~

flux surface; ; -
S<Q):—a—v(<(DV) LA Gy j
« Convection effects neglected,; >
RaW
« Constant diffusion coefficient; Te=Tg — kA BPR S jd (OT,)
Y

o Steady state conditions.
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ECH: Brief Theoretical Description

« T(Q) constant over the magnetic
flux surface;

« Convection effects neglected,;
« Constant diffusion coefficient;

o Steady state conditions.

#) 0LICH

FORSCHUNGSZENTRUM

S(Q) = —aiv(<(DV) Inkx. ZT j

P .w

T =T 1ot V d éT

. 2uRJ i w  cosfé)
rA, = dQrT d
Lr =S ET 3/2,[ e Cﬁ gz4J§JQ+COS(m<‘)

32:uors /7H tot F (W* r —r D)
B,s W, dep s

I:H = NH (W*’rdep = rS)GH (W*’Rdep - rs)M H (V\; ’D)



ECH: Brief Theoretical Description é

« T(Q) constant over the magnetic
flux surface;

» Convection effects neglected,;
 Constant diffusion coefficient;

« Steady state conditions.
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ECH: Brief Theoretical Description
_ - oner neoretical Jesernipion . e

0.27AW”° + 0.3%V

N, (w)=—= _
W) w2 +w +2.5
Const for w*>>1 00097
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rA, =

F, =N, (W*,rdep = rS)G

S(Q) = —aiv(<(DV) Inkx. ZT j

P.w
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Questions & Details?

e Modulation function: H(&D,¢) =H( cogmé/ 2+ ¢) —cosDrr/ 2))
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