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Outline

• ECCD or ECRH? A brief introduction to the topic
– The framework: MRE, assumption and limits 
– Electron Cyclotron Current Drive;
– Electron Cyclotron Resonance Heating;

• ECCD VS ECRH:
– Fore factor;
– Geometrical efficiency;
– Application of the model to ITER, AUG and TEXTOR;

• Conclusions and Outlooks
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ECCD or ECRH?

• ECCD and ECRH are proven to stabilize NTMs.

• ECRH is proven experimentally to be the dominant effect for island 
suppression in TEXTOR and T-10;

• Experiments on middle-large size tokamaks (DIII-D, JT-60, ASDEX) 
showed the same effect to be negligible compared to ECCD;

• In AUG a previous theoretical model (Yu, PPCF. 40, 1998) 
estimated ECRH to be more effective than ECCD; Experiments so 
far haven’t provided yet a clear confirmation;

• Predictions for NTMs stabilization in ITER are currently not including 
the ECRH contribution.
– More theoretical work to assess the validity of this approach is needed! 
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The model: assumption and limits

• Large aspect ratio;
• Constant Ψ approximation;
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with:                               ;

The model: assumption and limits
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Assuming a Gaussian distribution for the power deposition profile, with 
wdep ~ wCD and rdep ~ rcd:

IF:
– The effect of misalignment depends weakly on w*=w/wdep;
– The effect of modulation does not depend on rs-rdep;

The geometrical efficiency can be factorized into three figures of merit:
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ECCD: Benchmark with Literature: 
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• Normalization function    has 
been benchmarked with 
previous work (Sauter, Phys. 
Plasmas, 2004);

• A good agreement with the 
model is observed. A further 
improvement of the original 
function has been proposed in 
the picture.
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ECCD: Deposition location 

• Around the separatrix ECCD is 
destabilizing the island;

• For “large” islands 
destabilization can reach the 
50% of the GCD(rs);

• At rN=0.3, GCD is reduced by 
~60%;

• For “small” islands the trend is ~ 
the real part of the plasma 
dispersion function. 
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ECRH: Deposition location 

• No GH=0 crossing, no 
destabilizing effect;

• At rN=0.3, GH is reduced by 
~50%;

• Less strict requirement for 
localization accuracy;
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ECCD: Modulating the Power 

• Ptot is the total power in 
case of CW.

• MCD is optimized at 50%
on-time for w*<1, at ~70%
for w*>1;
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ECRH: Modulating the Power

• Modulation doesn’t 
enhance ECRH 
geometrical efficiency;

• At 50% on-time the loss is 
still negligible, around 
10%
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ECCD vs. ECRH: The Power Efficiency

• ”η“ is the efficiency with which the power generates a current perturbation either 
inductively, through perturbation of a temperature, or non-inductively, by direct 
current drive. 
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ECCD Vs ECRH: a geometrical comparison

TEXTOR
ITER

ASDEX

Current Drive Heating

• At w* =1,  FCD=FH;

• NCD is decreasing quadratically for    
w>>w* while NH is decreasing 
linearly at w<<w* ;

• Modulation is mostly relevant in the 
region where current drive is 
dominant.
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…and the winner is? The case of ITER

• For a saturated 3/2 island (about 
12.5cm), ECCD appears ~ 4.5 
times more efficient than ECRH; 

Log(ηCDFCD/ ηHFH) in ITER, Scenario 2 

ηCDFCD> ηHFH

0.45.744.90.7613.3

ηHηCDwdep (cm)ICD (MA)P (MW)

Typical parameters (Front steering):

Log(…)=0

ITER
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Conclusions and Outlooks

• High accuracy required for ECCD localization:
– At rdep ~0.3 max(w,w dep) GCD is reduced by ~60% while
– GH only by ~50%; 

• Power modulation enhances mainly ECCD efficiency. Best performances are 
found:

– At 50% on-time for w*<1,
– At 70% on-time for w*>1;

• The relative merit of ECCD and ECRH depends on ηH,CDFH,CD ;

• ECRH seems to become dominant at w/wdep >>1;

Coming Next:
• D. De Lazzari, E. Westerhof, “On the Merits of Heating and Current Drive for 

tearing modes stabilization”, to be submitted to Nucl. Fusion;    
• Comparison with experimental data. 
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THANK YOU FOR YOUR ATTENTION!
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…and the winner is? The case of ITER

• For a saturated 3/2 island 
(about 12.5cm), ECCD 
appears more efficient; 

Log(ηHFH/ ηCDFCD) in ITER, Scenario 2 

ηCDFCD> ηHFH

1.98.411.20.1215

ηHηCDwdep (cm)ICD (MA)P (MW)

Typical parameters (Remote steering):

Log(…)=0
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ECH: Brief Theoretical Description

2( ) ( ) eS V n k
T

VV
χ ⊥

∂∂  Ω = − ∇
∂ ∂  

• T(Ω) constant over the magnetic 
flux surface;

• Convection effects neglected; 

• Constant diffusion coefficient;

• Steady state conditions.

Plasma diffusion equation:
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( ) (| cos; , / 2( ) cos( ) |2 )/H H m DDξ φ ξ φ π−+=

Questions & Details?

• Modulation function:


