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Resistive Wall Mode stabilization in NSTX may be
explained by kinetic theory

e Motivation

— The relationship between plasma rotation and RWM stability
in NSTX is more complex than simple models suggest, and
kinetic theory has the potential to explain it.

e Qutline
— The MISK code is used to calculate RWM stability.

— Kinetic theory matches NSTX experimental results of
instability at moderate rotation.

— Kinetic theory can match the evolution of a shot.
— DIII-D results suggest the importance of hot ions.
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The relationship between rotation and RWM stability

40(
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130228 @ 0.545 s
130229 @ 0.605 s

100 125
R (cm)

Examples of plasma
rotation profiles at the
time of RWM instability.

is not straightforward in NSTX

| « RWM observed in NSTX with

130230 @ 0.495s |
130235 @0.7455 |

a variety of plasma rotation
profiles.

— Including with w =0 atthe g =
2 surface.

— This does not agree with
“simple” theories.

— What can kinetic theory tell us
about the relationship
between rotation and stability?

@ NSTX

MHD 2008 — RWM Stabilization in NSTX (Berkery) November 23, 2008 3



The Modifications to ldeal Stability by Kinetic Effects
(MISK) code

e Written by Bo Hu, University of Rochester
— Hu, Betti, PRL, 2004 and Hu, Betti, and Manickam, POP, 2005

e Uses a perturbative calculation, with marginal stability
eigenfunction from the PEST code.

e Calculation of 8W_ includes the effects of:

— Trapped lons

— Trapped Electrons N Tw = — 0Woo + Wk

— Circulating lons oW + oWk

— Alfven Layers T T

— Hot lons PEST MISK
(Hu, Betti, and Manickam, PoP, 2005)
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MISK and MARS-K were benchmarked
using a Solov’ev equilibrium

poP (1) =

(

1+ k2

_H’quoqvba F(”‘P) =1

K R?7? N 1
© 2R3qo | K% 4

(R? — R2)” — a®R}

— Simple, analytical solution to
the Grad-Shafranov equation.

— Flat density profile means w.
=0.

— Also, w, y, and v are taken to
be zero for this comparison, so
the frequency resonance term
is simply:

A 3
E—5)Ws«T tWE | 5 _+ ..

5WK0</ ( 2) - E2e “dé
(wp) + lwp + wEg

4 45 5 55 6
R [m]
(Liu, ITPA MHD TG Meeting, Feb. 25-29, 2008)
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MISK and MARS-K match well at reasonable rotation
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equilibria.
'0-3 LIL IIIIIII LILI IIIIIII LIL IIIIIII LI IIIIII| rrrrirm '0-3 LIL IIIIIII LILI IIIIIII LIL IIIIIII LI IIIIII| rrrrirm
0.001 0.01 a1 1 10 100 0.001 0.01 a1 1 10 100
gy gy
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The dispersion relation can be rewritten in a
convenient form for making stability diagrams

The kinetic contribution has a real and imaginary part, so:

W Wy + (Im(0Wk))? + Re(6Wi ) (6Woo + 6Wy, + Re(0Wk))
(0Wp + Re(Wg))? + (Im(0Wi))?

Re(vkTw) =

(Re (5WK) — a)2 . (Im (5WK))2 — 2

On a plot of Im(6W,) vs. Re(6W,), contours of constant Re(yt,)
form circles with offset a and radius .

1 1 Re(yTw)
= —(0Wp + W — (W, — W
¢ 2( b+ )+2( b )l—I-Re(’yTw)
1 1
= — (W), — W
"3 (OWs ) 1+ Re(yTw)
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Example calculation: NSTX shot 121083 @ 0.475s

6.0[

W = —2.09x 10~ 2eesn
7.42 x 1073  (esn
1.89 x 1072 (misk)

e
|

AN
=
™
E
&
[

50.0F " CHERS channel 5 | | ' Im(5WK) = 841 X 10_3 (MISK)
[ —— CHERS channel 20
_ 3757 mm n=3 magnetic braking
i 25.0: 0.03
e r L
12.5
0.0 M
30 | 0.02
s . e
L 15- r‘\1— g
0 WM“*W*WW&» E

0.01

unstable

...................................................................

< »

0.00 ‘ A I
0.00 0.01 0.02 0.03 0.04
0.2 0.3 0.4 0.5
Time (s) Re(3Wy)
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The Kinetic Approach to 6W

mn 22 _jxB-v.p starting with a momentum equation...

dt

1 1 . .
w2§/mn|§|2dV: 5]5*-(3' x B+ j xB—Vﬁp—VﬁK) dV WK = 6Wp + 6Wxk

e . N 1
...splitting into fluid and kinetic pressures Wk = —5/6* - VprdV

Volume Pitch Angle
. v, o0 Bo/Bmin /
For trapped ions: (mm':/ Céf (1fn) vr S d\#  Energy
0 T,

2 l=—o0 Y Bo/Bmaa /
00 ~ 3 _ o
X/ WxN T (5 2)_w*T +Wwp —w 37 é5/26_éd§

0 (wp) + lwp — Ve + W —w — 17y

(o) e () o )

(Hu, Betti, and Manickam, PoP, 2006)
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The “perturbative” approach may be
sufficiently accurate

e There are two major differences between the two
approaches

— First, the self-consistent approach includes the effects of kinetics
on the eigenmode.

— Second, the self-consistent approach finds multiple roots.

— The first effect may not be important. The second can, in
principle, be found with the perturbative approach as well.

o0 B Bfmz'n
P L G L Y e
7)o Bo\1+ZLZ) 2 B ’
T; l=—o00 O/B'mam
oo
X /
0

A A 2 . .
_ . _ . (Hu, Betti, and Manickam, PoP, 2006)
X<(2 3BO/B) (&) (BO/B) v EJ_)>

gd/20—¢ 2

w*N—i—(é—%)w*T—FwE—w—i'y
(wp) + lwy — et + W — w — 37y
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Stabilization arises from the resonance of various

plasma frequencies

Frequency resonance term: 5wy « /

1.2x10°

o [rad/s]

1.0
0.8 —
0.6 —
0.4 —
0.2 —
0.0 — }
-0.2 —
-0.4

win + (€ = L) wer + wp —w — iy

T @ T Sy T

A
Dy A Vet [S ]

k J’\%\f;ﬁg

0.0

B

0.2 04 0.6 08 1.0

I,

(Wp) + lwp — Weff + Wg — w — 17y

The collision frequency shown is for thermal ions, the bounce and
precession drift frequencies are for thermal ions and zero pitch angle.

€2e”°dé
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Strong trapped ion stabilization comes from the
outer surfaces

6x10™
 Trapped Electrons {,1/21083 Contributions to
~ ]| = Aiven Layers Re(6W,)
% 2 - ) | — Alarge portion of the
%‘! : ~ /. NW' kinetic stabilization
T 7 P - 1 ‘ | comes from g>2,
= / i where w.y and w.;
q=2 q=3.. Z(L)E.
4 | | | |
0.0 0.2 04 0.6 0.8 1.0
Y

The flat areas are rational surfaces (integer q + 0.2) where the
contributions have been zeroed out and dealt with analytically through
calculation of inertial enhancement by shear Alfven damping.

(Zheng et al., PRL, 2005)
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The effect of rotation on stability
iIs more complex with kinetic theory

-~ 3 .
WskN T (E—F)wsrT +WE —W —Y| 5 _~ ..
v+ 2). - — | £2e°dE WE = Wep — WxN — WxT
(wp) + lwp — e + WE — w — 17

ro|

5WKO(/

Using self-similarly scaled rotation profiles, we can isolate and test the effect of

rotation on stability.

o, [kHZ]

¥/, 121083

13
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The effect of rotation on stability
iIs more complex with kinetic theory

. | 23e4de WE = We — Wi N — Wy
(wp) + lwp — et + WE — w — 17 ¢

5WKO(/

Using self-similarly scaled rotation profiles, we can isolate and test the effect of
rotation on stability.

0.03

0.02

o, [kHZ]
Im(6Wy)

0.01

0.00 A B
0.00 0.01 0.02 0.03 0.04
Y, 121083 Re(oWy)
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Resonances with multiple particle types
contribute to the trends

Re(5W,)

—— Trapped lon

—— Trapped Electron - - - Re{dW_K) (Total)

—— Circulating lon

—— Alfven Layer

Im@EW,)

—— Trapped lon

—— Trapped Electron - - - Re(dW_K)} (Total}
—— Circulating lon

—— Alfven Layer

b5 20 25 30 35 40

121083

— For oo(b/oocbexIO from0to 0.6
stability increases as the real
and imaginary trapped ion
components increase.

— From 0.6 to 0.8 the real part
increases while the imaginary
part decreases, leading to the
turn back towards instability.

— For rotation levels above the
experimental value, trapped ion
and circulating ion components
rise, leading to strong stability.
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Isolating and testing the effect of collisionality
reveals band of marginal stability

10.0f

vive

contours of Re(yt,,)

0.3

1.0}

L RGN

0.0 Tos \1.5 2.0
03¢/C°¢m

— Density and temperature

profiles are self-similarly
scaled while keeping B
constant (ie, n*2 and T/2
or n/2 and T*2).

We find a low rotation
“critical” threshold.

However, there is also a
band of marginally stable
moderate rotation, and it
is here that the
experiment goes

Similar to a “critical” Band of marginally stable unstable.
rotation threshold. moderate rotation.
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Analysis of other NSTX shots shows the same
characteristic behavior

121083 0% 121088 109
5 10} ] S
- ¥ -
i S0 AN
0.1l J/x\:\\\\\?//\\i'% .
00 05 10 15 20
/o™
10.0F
121090 ; R 121093
5 10 S
- -
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Kinetic prediction of instability matches
experimental result

e Examining the evolution of
a shot
— For NSTX shot 121083, 3 and
w,,are relatively constant

leading up the the RWM
collapse.

— Calculation of the RWM
kinetic growth rate for

. er- . 30
multiple equilibria shows a 5 | f\ A
. ope . ~ 15+ A
turn towards instability just |
R T v S| JL,W
before the RWM. g et
2
E b
1
0.400 0.425 0. 450 0. 475 0.500
Time (s)
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As time progresses the stabilizing 6W, decreases

\

0.00 . . . . . . . .
000 002 004 006 008 000 002 004 006 008 000 002 004 006 0.08
Re(3W,) Re(3W,) Re(3W,)

0.400

N\

%
0.00 \

000 002 004 006 008 000 002 004 006 008 000 002 004 006 0.08
Re(3W,) Re(3W,) Re(3W,)

0.470 0.475
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Hot ions have a strongly stabilizing effect for DIII-D

100

1.0 _ 1.0
1875 ms WIthOUt Wlth hOt i0n51875 ms
2200 ms 2200 ms 2200 ms
0.5 — 0.5 —
50 g 2600 ms , 2600 ms
i 0.0 // 0.0 /
0- | 1875Ms 200 ms
T B 05— o LIiiieaens 0.5 -
i ‘ wg=0 | | TTTTTTTE e
' og=0
=1 o [krad/s] YRwWM Tw YrRwm Tw
-50 1 I 1 I 1 I 1 I 1 '1 0 1 | | 1 I 1 1 1 1 l 1 '1 0 1 | | ] I 1 1 1 1 | 1
00 02 04 06 08 1.0 2.0 25 3.0 2.0 25 3.0
Py By B

— Using the equilibrium from DIII-D shot 125701 @ 2500ms and rotation from
1875-2600ms, MISK predicts a band of instability at moderate rotation without
hot ions, but complete stability with hot ions.

— This could help to explain why DIII-D is inherently more stable to the RWM
than NSTX, and possibly why energetic particle modes can “trigger” the RWM.

(Matsunaga et al., IAEA, 2008)
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Summary

e Kinetic effects contribute to stabilization of the RWM,
and may explain the complex relationship between
plasma rotation and stability in NSTX.

e The MISK code is used to calculate the RWM growth
rate with kinetic effects.

e Calculations match the experimental observation of
instability at moderate rotation and the evolution of a
discharge from stable to unstable.

e DIII-D results suggest the importance of hot ions.

NSTX MHD 2008 — RWM Stabilization in NSTX (Berkery) November 23, 2008
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Hot ions contribute a large fraction of 8 to DIlI-D, and

have a strong stabilizing effect

100
N — Pe
80— © —— Pith
—— Pa
w - — Pe+Pith+Pa
< 60
b4 RN
2
40 — .
£ . <
20 Tl %
0 1 l I I I I I l
0.0 0.2 0.4 0.8 0.8 1.0
Y/ Y,

— Hot ions not yet
implemented for
NSTX.

Re(5W,)

without hot ions

0.02 - T T T T
DIlI-D 125701 N
0.01 ° _
0.00 -
-0.01 A e
0.00 0.01 0.02 0.03 0.04

with hot ions

@ NSTX

MHD 2008 — RWM Stabilization in NSTX (Berkery)

November 23, 2008 23



Drift frequency calculations match for
MISK and MARS-K

IR o=0. 02

o J(Ecle)

20
30
43.97 0.98 0.89 A=B1° WE 1.1

MARS

(Liu, ITPA MHD TG Meeting, Feb. 25-29, 2008)

large aspect ratio approximation (Jucker et al., PPCF, 2008)

(wp) 2gA

E (k?)
= 2 1
e/e  RZBye, (25 +1)

K (k?)

1.03

+2s (k¥ — 1)

<opy>{(sle) [rad/eV]

1

2

1 e =002019 P
| --- cylinder 0
— MISK -
| | | | |
0.97 0.98 0.99 1.00 1.01 1.02 1.03

A =pBye

MISK

L [1=A+eA]®
B 2¢,. A\

here, €, is the inverse aspect ratio, s is the magnetic shear, K and E are the complete elliptic integrals of the
first and second kind, and A = uB,/g, where p is the magnetic moment and ¢ is the kinetic energy.
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Bounce frequency calculations match for
MISK and MARS-K

10° : : : : : 1~
r/ROZO.OZ
/ g
lind £
N cylinder =
5 g
= o
5 T
< 3
y 10t "uh
& !
- i
- o] € =002019 ! o
L 51 cylinder ;2
. 9 .
© 5
x x x x 3 | | | | |
0 0.2 04 A:BOHO/E 0.8 ! 0.0 0.2 0.4 06 0.8 1.0
A =pBye
MARS
MISK

(Liu, ITPA MHD TG Meeting, Feb. 25-29, 2008)

large aspect ratio approximation (Bondeson and Chu, PoP, 1996)

Wp V2. N (tra ed) wWp \/1 —AN+¢e.A ™ ( ) lati )
— = circulatin
V2e/m;  4qRo K(k) PP \/2e/m; 2qRo K(1/k) °

L [1=A+eA]®
B 2¢,. A\
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Components of 6W, without and with hot ions

5x10° 2
—— Trapped lon —— Alfven Layer 5x10
. —— Trapped Electron - - - Re(3W,) (Total) e b hrvan Layer
Circulating lon 4 — Clreulating lon— — Re(3W,) (Total)
’ hES -
3 d/ ~.
< = - S
g = ) -
3 2- JRREN
n: - S
1— aN
0— / \=<:
-1 I I I I l I I I
0.0 04 0.8 1.2 1.6 2.0
0 0,
Trapped lon —— Alfven Layer 6x10°
_ —— Trapped lon Hot lon
— Trapped Electron - - - Im(5W,) (Total) —— Trapped Ele. —— Alfven Layer
4— Girculating lon— — Im(3W,J) (Total)

Circulating lon

IMEW,)

20

D,/ ‘“:xp

N

hot ion
contribution
is large.
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Hot ions are included in MISK with a slowing-down
distribution function

- N -
1 -1 1 d 3 3éd 7 a ; 5
é§ *N_I_w)c—l_ + 3 d‘l’ec + A%+A§ a(wE_w_?/-Y) &‘A.Q-
a a e l'51:.-. 5(‘ Eq E¢ a -~
OWic o / S @a / (W4 + lwt — v + Zg (WE — w — 1) SIS @a
€a tE&¢ D b eff T “a\WE 82 4 A2

(Hu, Betti, and Manickam, PoP, 2006)

(=) )

dw

(L

o

|

VY
w

*‘“3
)

S—

Wit

VRS

e

N—

N

F3

S—

wl=

VRS

e

N—
&

~2
|

),

2 rajee

_+_ gl;lr—-

),

O pajeo
QL
>
2

Profiles of p, and n_, calculated by onetwo are used both directly and to find €.
The hot ion pressure is subtracted from the total pressure for the other parts of

the calculation.
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MARS-K (perturbative) and MISK produce similar
results for the same DIIlI-D case

AN

-0.5

MARS-K (perturbative) - RWM growth rate
EFIT 125701 @t=2500ms

Re(rs,)

" Exp. w_
. - 0.4
= log, [0 iq=2)w,] Exp. C[3
C
MARS

35 Exp. wg
0 4 =
p loglog(a=2)/,]

-1.5
0.6

(Reimerdes, PO3.00011, Wed. PM)

— Results are qualitatively similar. Main differences are unstable
magnitude and behavior at low wy.

— This case does not include hot ions.
@ NSTX
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Future work: inclusion of pitch angle
dependent collisionality

%) - | F|of ,.
[a + Vg - V] f+ ol gy = C(f) Collisionality enters through drift kinetic equation
C(f) = Vet f Effective collisionality can be included in various forms:
vo = 0 (collisionless)
n;etIn A,
v (¥) = - —5— (no energy dependence) (MARS)
12n2egm? T €,
va(W,e) = V672 (simple energy dependence) (MISK)
(W, e, A) Wn | Zogr + —e—f + —= (2 ’“—1)/\/g —dt
v3(W, e, = 2v F e — (2 ¢ e
3 1 e ﬂ'é\ ﬁ 0

0 By 0 By :
X A (A 5 A) BT ( 5 A) (Lorentz operator, pitch angle dependence)

(Future?)

(Fu et al., POFB, 1993)
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RWM can be experimentally unstable in NSTX

. 1 e RWMobservedin NSTX on
| magnetic diagnostics at the
time of B and w,, collapse.

L —— - - — Does kinetic theory predict
1 e that the RWM growth rate
: becomes positive at this time?

— We will calculate yt,, the
normalized kinetic growth rate,
with the MISK code.
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Previous “simple” models led to a “critical” rotation

{(ﬁ- — i) vy (3 — i) + (1 — k) (1 — md)

V

toroidal plasma rotation

Fitzpatrick simple model

— Plasma rotation increases

stability, and for a given
equilibrium there is a
“critical” rotation, above
which the plasmais
stable.

FPerfect wall

stability imit

0.5

-0.5

Error—field

resonance

-1

} (35, +1+md) =1 — (md)*

(Fitzpatrick, PoP, 2002)

decreasing w, 7

stability limit |

g .
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The RWM Energy Principle
is modified by kinetic effects

oW

NE Ty = — — (Haney and Freidberg, PoF-B, 1989)

W 4 oW

YK Tw — — C“Irb + 511}{ (Hu, Betti, and Manickam, PoP, 2005)

PEST J L MISK

The kinetic contribution has a real and imaginary part, so:

W oWy 4+ (Imn(6Wx )2 + Re(6W i) (W 4+ Wy, + Re(6TWx))
(0Wy, + Re(dWi )2 + (Im(6Wk ))?

Rf’(’}KTw) - -

@D NSTX MHD 2008 — RWM Stabilization in NSTX (Berkery) November 23, 2008
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Inputs to the hot ion contribution

Given p, and n_, find €, by iteration:

3
_ 2 22
Ta=3 (/E—ds) (f
€qa +E&¢

2.0x10°% —
L 15
3
fa
£ 1.0—
0.5 -
0-0 1 I 1 I 1 I 1 | 1
00 02 04 06 0.8
W,
Input

1.0

-1

.
Ea R R
Eq + &2

200

100 —

0 I | I | I I I I I
00 02 04 06 08
AP,

input

1.0

0 I | I | I I I I I
00 02 04 08 08 10
AP,

result™

* note that the rise at the edge is due to n, going to zero faster than p,. This didn’t affect the
results in this case (see W > 0.9 on plot on next page), but it is something to pay attention to.
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Difference between hot and thermal ion calculations

Let us examine the difference between the trapped ion and hot ion contributions:
1 dlIJ ~hi X 7
Wi = Z V27 B, Maca / AAF|(H") 21"

5Wn: \/_/ /dAAtz|<th>| Iti

6x10™
—— Trapped lons
hi hi —— Trapped Electrons
WK ~ (2 )_ Na €a 1 4 — Circulating lons
5W”’ n; T It —— Hot lons

Q

09

)

AW, /d(EI,)
o (%]
| |

-Oﬂ"_ﬂ
small -2
large to very large, 4 —
near edge 0.0 0.2 0.4 0.6 0.8 1.0
comparable Y,
magnitudes, Large €, near the edge amplifies any hot ion energy integral
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Non-resonant magnetic braking is used to probe
RWM stabilization physics

— Scalar plasma rotation at g = 2 inadequate to describe stability.
e Marginal stability, By > By, with w92 =0

— Q... doesn’t follow simple w,/2 rotation bifurcation relation.
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