
Computational analysis of advanced control methods applied to RWM control in tokamaks

Oksana N. Katsuro-Hopkins

Columbia University, New York, NY, USA

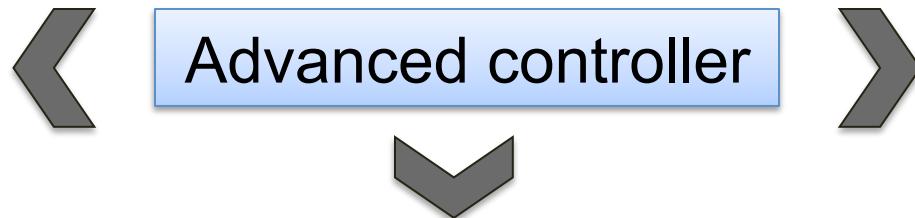
with S.A. Sabbagh, J.M. Bialek

US-Japan Workshop on MHD Control,
Magnetic Islands and Rotation

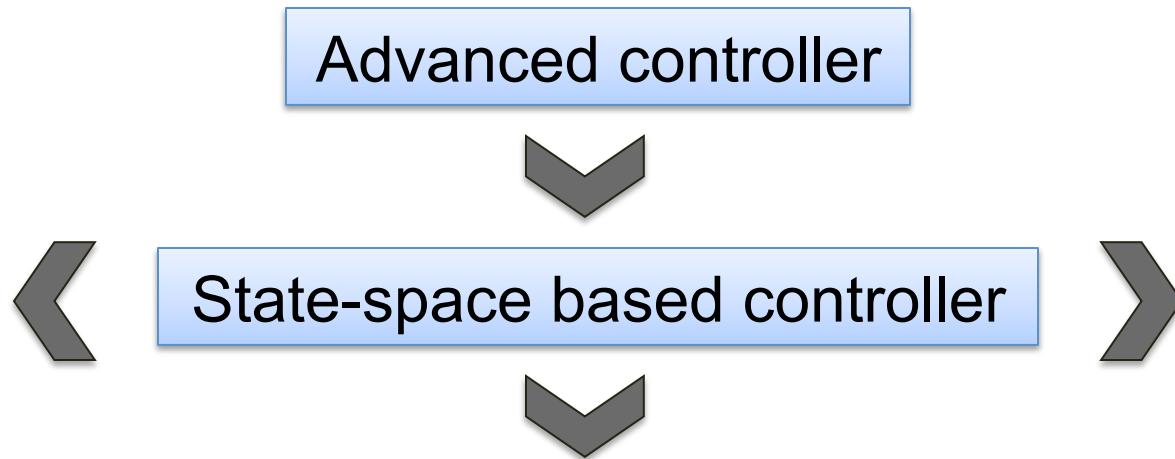
November 23-25, 2008

University of Texas, Austin, Texas, USA

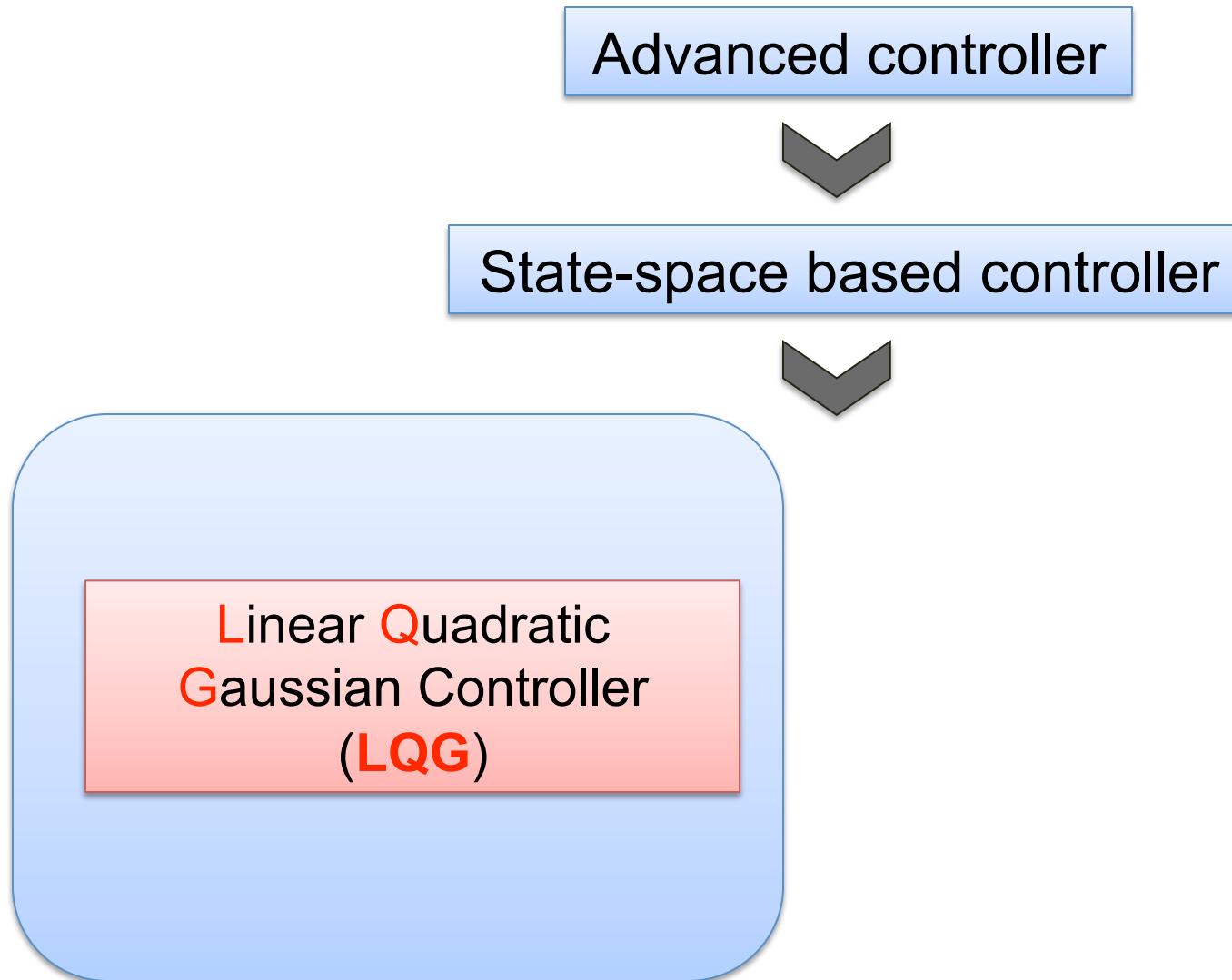
Control theory terminology used in this talk



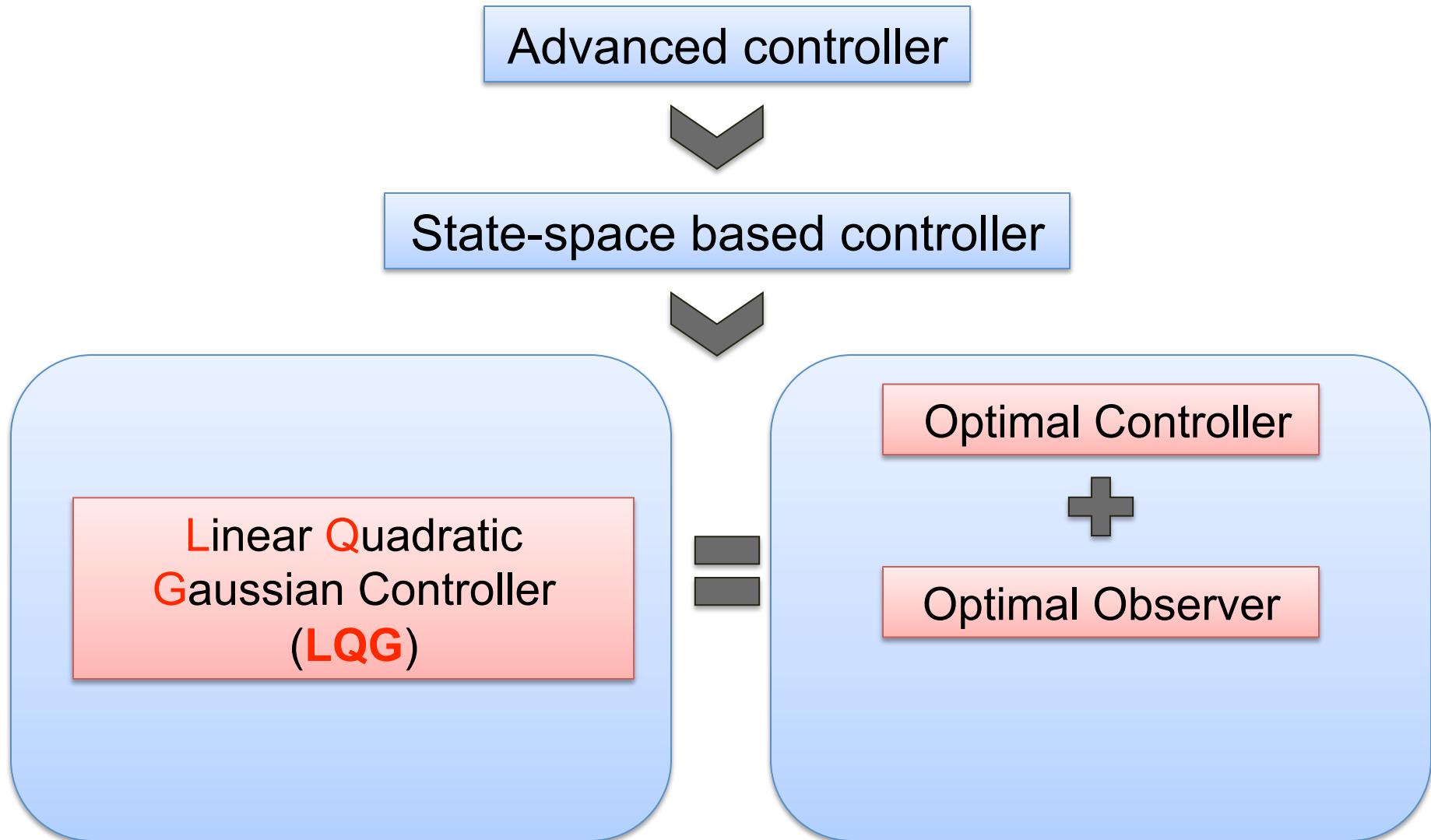
Control theory terminology used in this talk



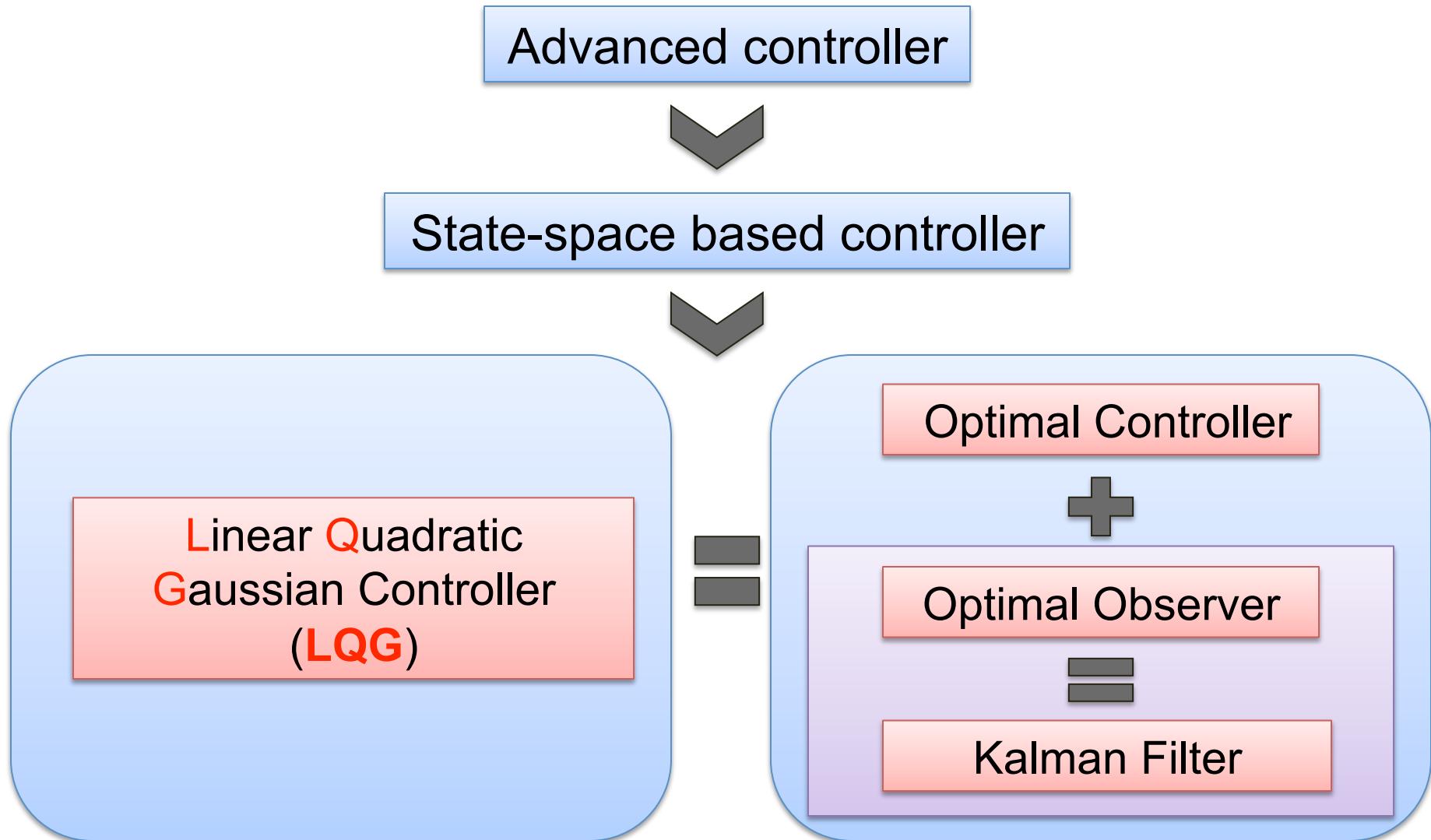
Control theory terminology used in this talk



Control theory terminology used in this talk



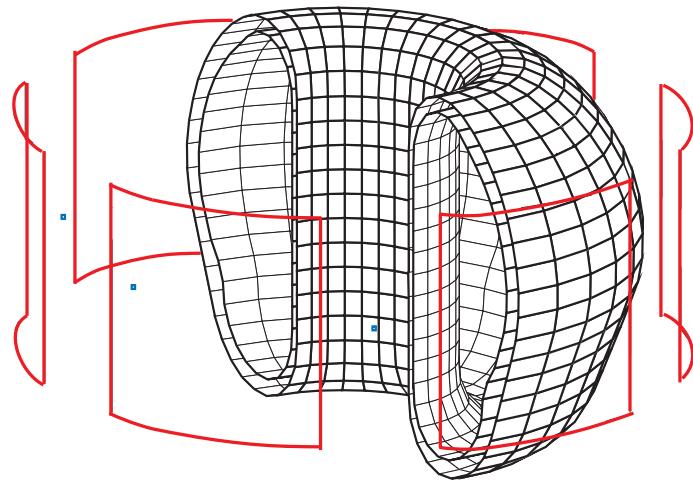
Control theory terminology used in this talk



LQG controller is capable to enhance resistive wall mode control system

- Motivation
 - To improve RWM feedback control in NSTX with present external RWM coils
- Outline
 - Advantages of the LQG controller
 - VALEN state space modeling with mode rotation and control theory basics used in the design of LQG
 - Application of the advanced controller techniques to NSTX

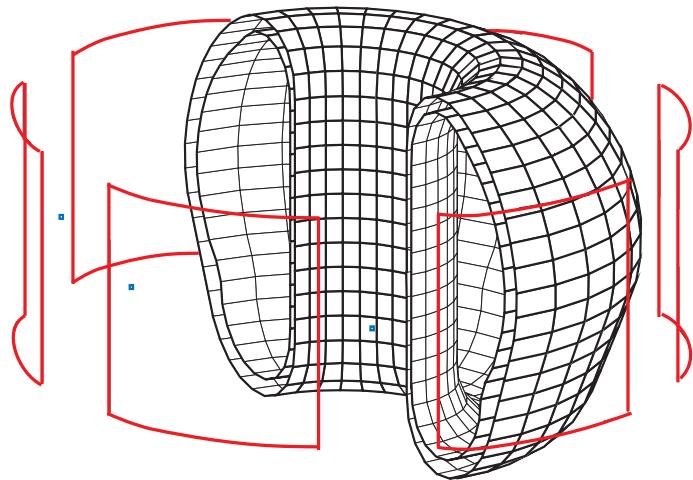
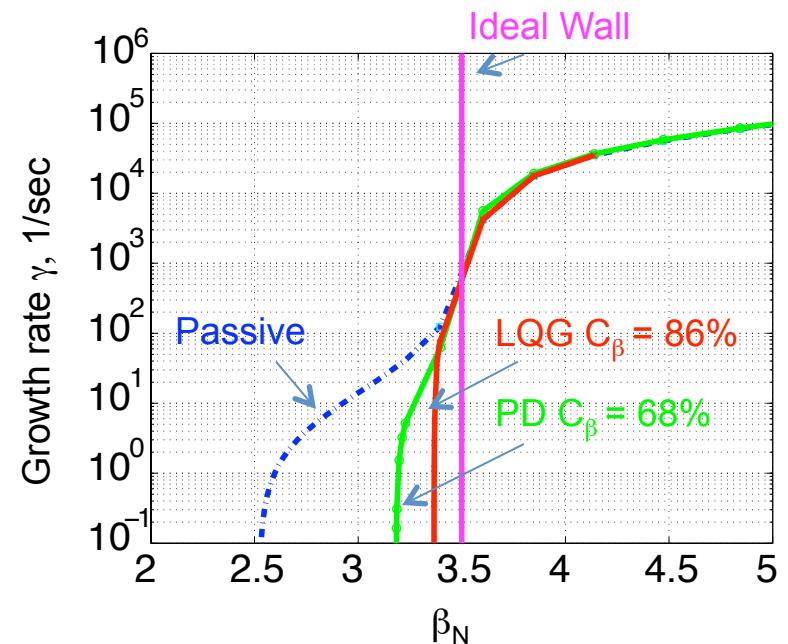
Limiting β_n RWM in ITER can be improved with LQG controller* and external field correction coils



- Simplified ITER model includes
 - double walled vacuum vessel
 - 3 external control coil pairs
 - 6 magnetic field flux sensors on the midplane ($z=0$)

*Nucl. Fusion 47 (2007) 1157-1165

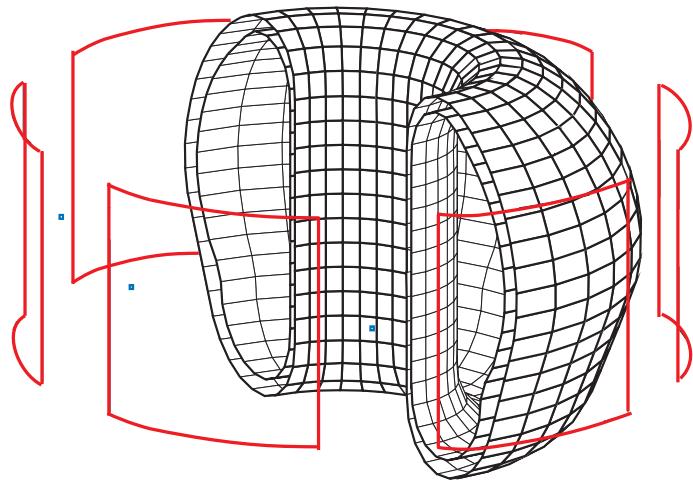
Limiting β_n RWM in ITER can be improved with LQG controller* and external field correction coils



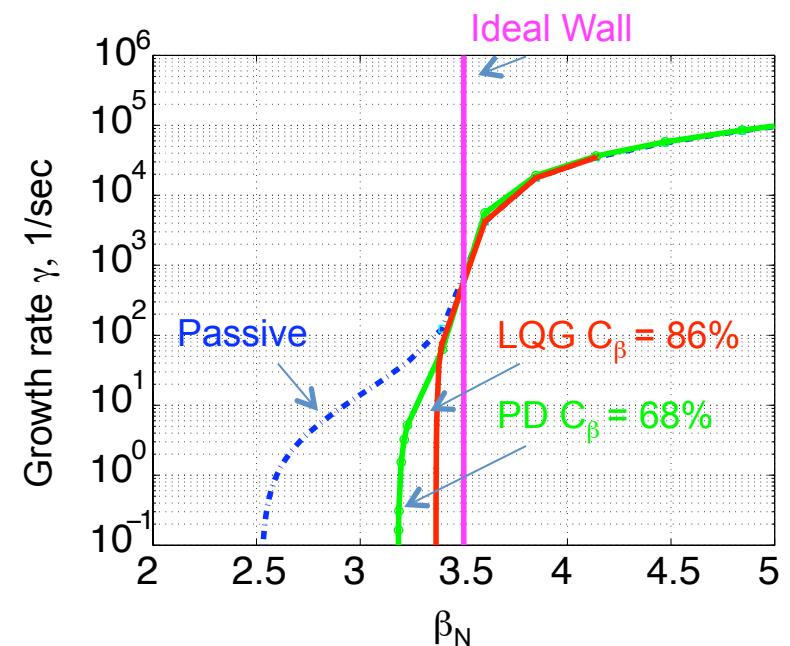
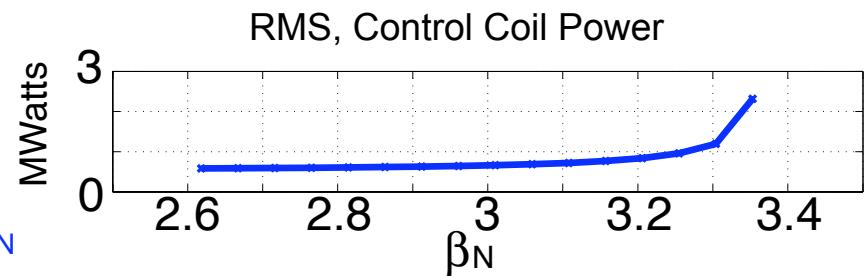
- Simplified ITER model includes
 - double walled vacuum vessel
 - 3 external control coil pairs
 - 6 magnetic field flux sensors on the midplane ($z=0$)
- 10 Gauss sensor noise RWM
- LQG is robust for all $C_\beta < 86\%$ with respect to β_N

*Nucl. Fusion 47 (2007) 1157-1165

Limiting β_n RWM in ITER can be improved with LQG controller* and external field correction coils

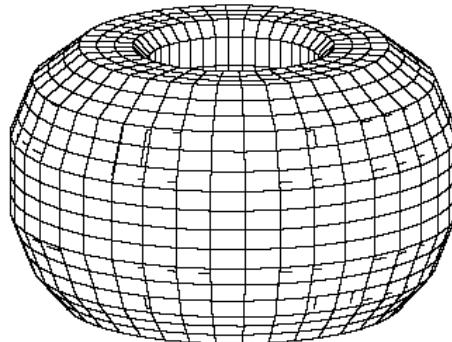
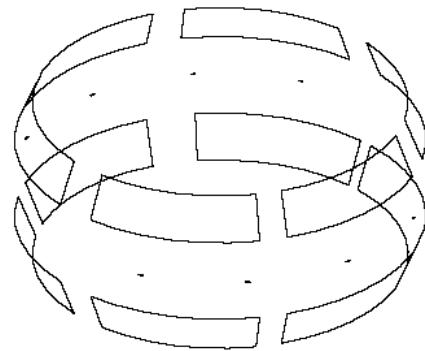


- Simplified ITER model includes
 - double walled vacuum vessel
 - 3 external control coil pairs
 - 6 magnetic field flux sensors on the midplane ($z=0$)
- 10 Gauss sensor noise RWM
- LQG is robust for all $C_\beta < 86\%$ with respect to β_N



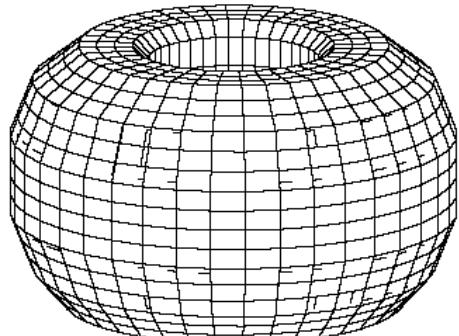
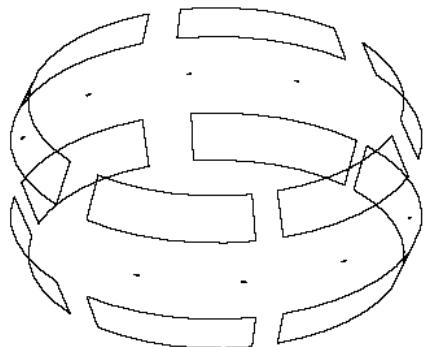
*Nucl. Fusion 47 (2007) 1157-1165

DIII-D LQG is robust with respect to β_N and
stabilizes RWM up to ideal wall limit

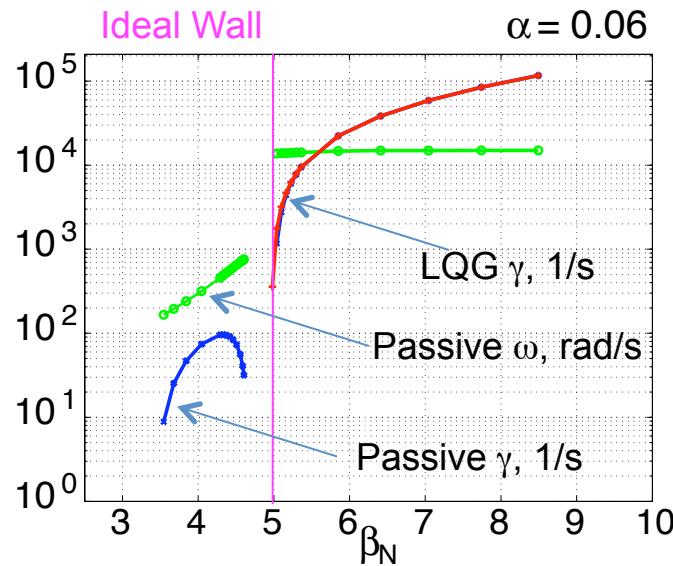


*DIII-D with
internal control coils*

DIII-D LQG is robust with respect to β_N and stabilizes RWM up to ideal wall limit

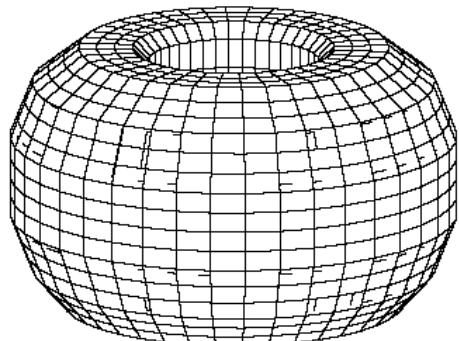
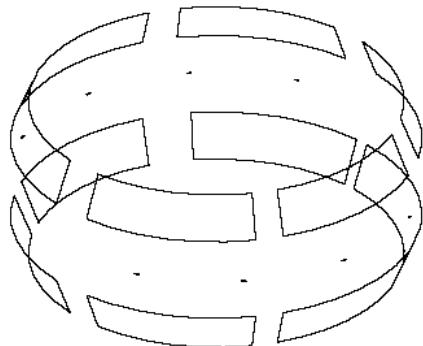


*DIII-D with
internal control coils*

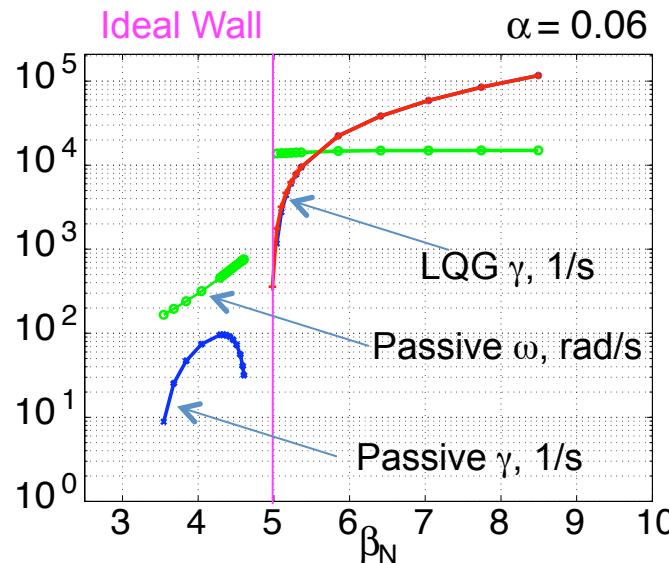
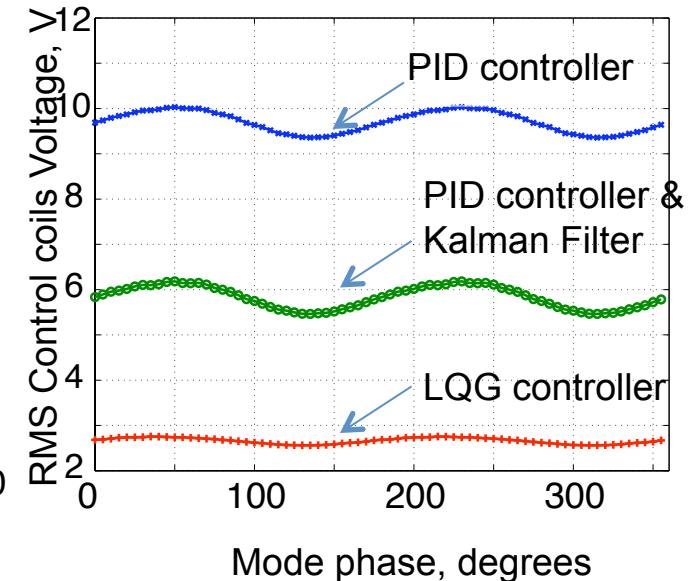


- LQG is robust with respect to β_N and stabilize RWM up to ideal wall limit for $0.01 < \text{torque} < 0.08$

DIII-D LQG is robust with respect to β_N and stabilizes RWM up to ideal wall limit



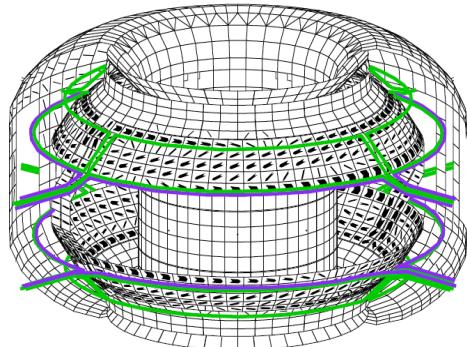
DIII-D with
internal control coils



- LQG is robust with respect to β_N and stabilize RWM up to ideal wall limit for $0.01 < \text{torque} < 0.08$
- LQG provides better reduction of current and voltages compared with proportional gain controller

Initial results using advanced Linear Quadratic Gaussian (LQG) controller in KSTAR yield **factor of 2 power reduction** for white noise*

$n=1$ RWM passive
stabilization currents

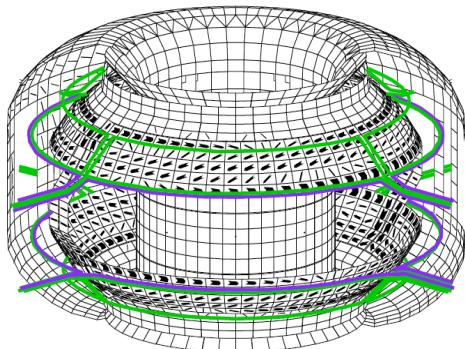
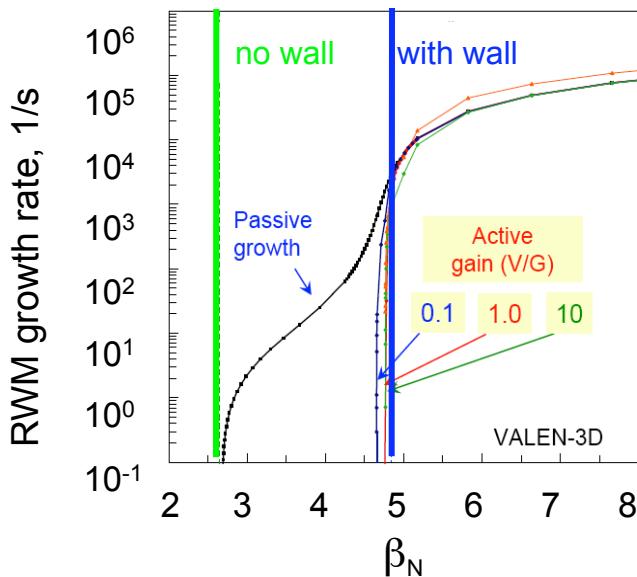


- Conducting hardware, IVCC set up in VALEN-3D* based on engineering drawings
- Conducting structures modeled
 - Vacuum vessel with actual port structures
 - Center stack back-plates
 - Inner and outer divertor back-plates
 - Passive stabilizer (PS)
 - PS Current bridge

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins

Initial results using advanced Linear Quadratic Gaussian (LQG) controller in KSTAR yield **factor of 2 power reduction** for white noise*

$n=1$ RWM passive stabilization currents

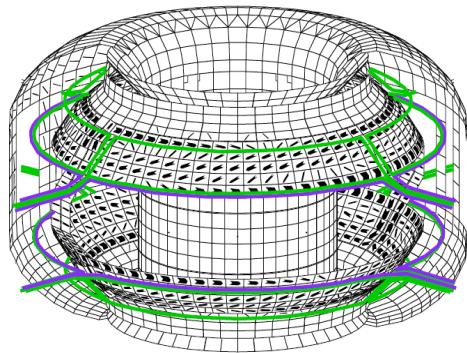
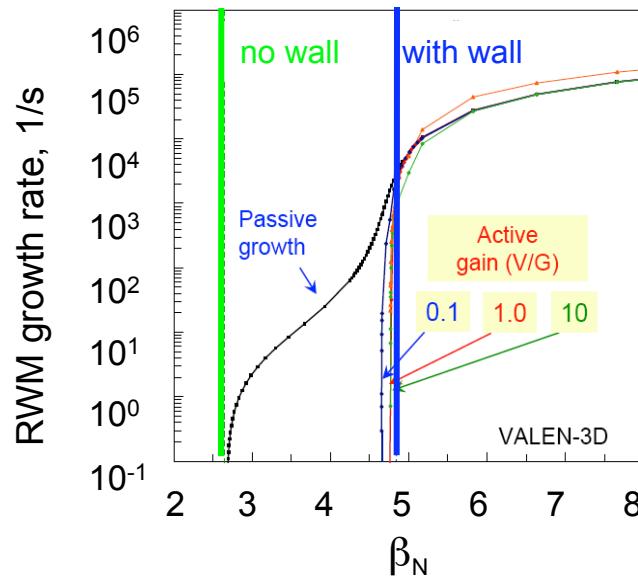


- Conducting hardware, IVCC set up in VALEN-3D* based on engineering drawings
- Conducting structures modeled
 - Vacuum vessel with actual port structures
 - Center stack back-plates
 - Inner and outer divertor back-plates
 - Passive stabilizer (PS)
 - PS Current bridge
- IVCC allows active $n=1$ RWM stabilization near ideal wall β_n limit, for proportional gain and LQG controllers

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins

Initial results using advanced Linear Quadratic Gaussian (LQG) controller in KSTAR yield **factor of 2 power reduction** for white noise*

$n=1$ RWM passive stabilization currents



White noise (1.6-2.0G RMS)

(RMS values)

C_β	$I_{IVCC}(A)$	$V_{IVCC}(V)$	$P_{IVCC}(W)$
80%	3%	50%	47%
95%	15%	51%	58%

Unloaded IVCC
L/R=12.8ms

C_β	$I_{IVCC}(A)$	$V_{IVCC}(V)$	$P_{IVCC}(W)$
80%	38%	75%	47%
95%	15%	73%	58%

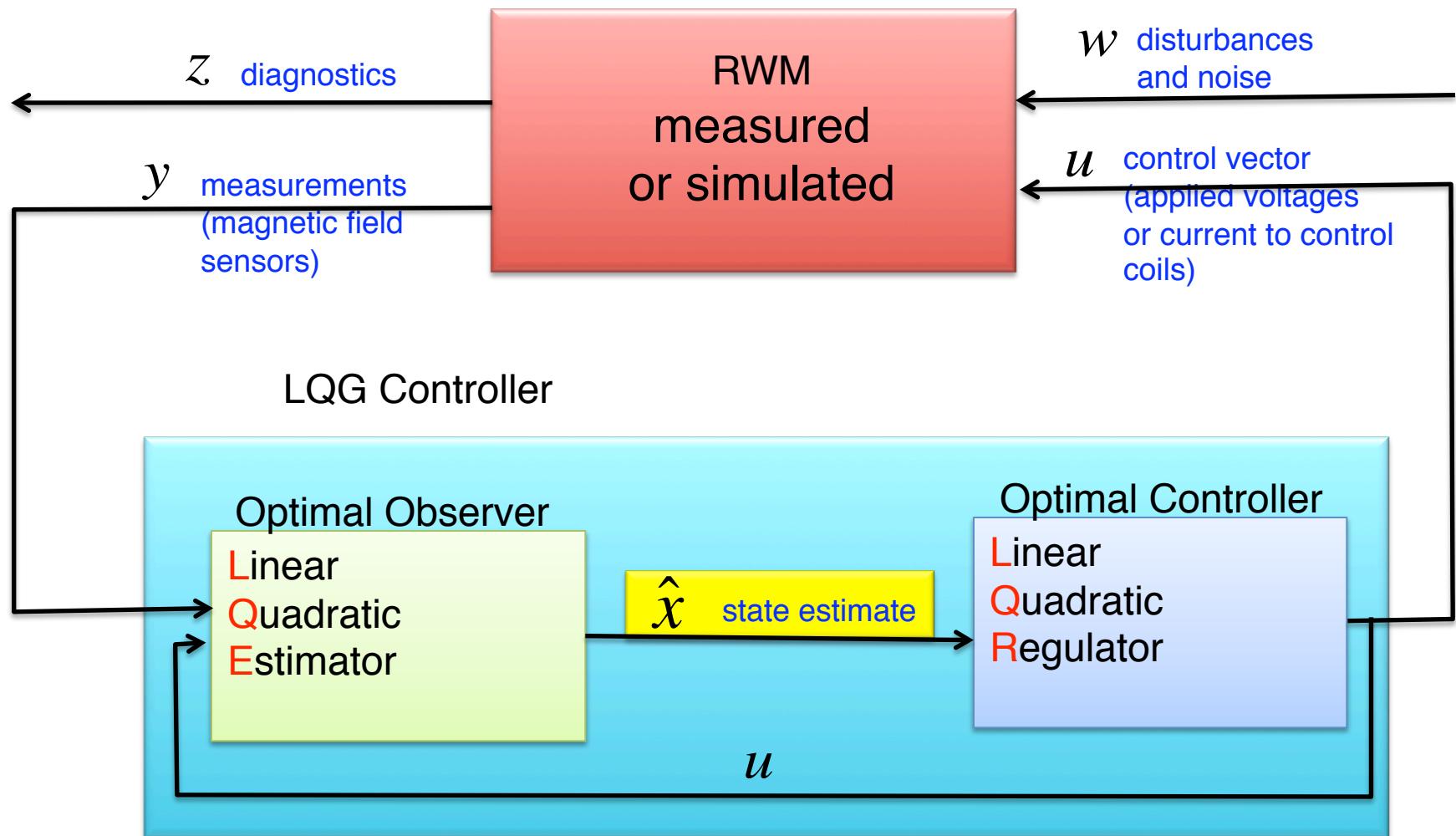
FAST IVCC circuit
L/R=1.0ms

- Conducting hardware, IVCC set up in VALEN-3D* based on engineering drawings
- Conducting structures modeled
 - ❑ Vacuum vessel with actual port structures
 - ❑ Center stack back-plates
 - ❑ Inner and outer divertor back-plates
 - ❑ Passive stabilizer (PS)
 - ❑ PS Current bridge
- IVCC allows active $n=1$ RWM stabilization near ideal wall β_n limit, for proportional gain and LQG controllers

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins

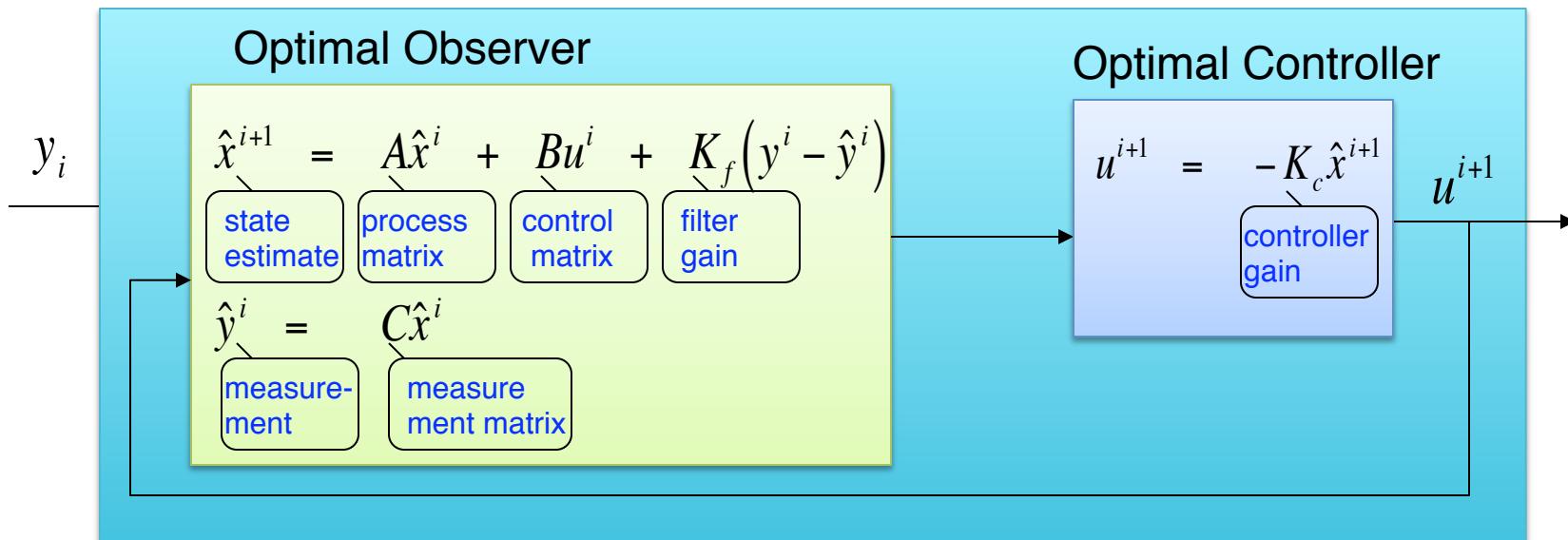
Tutorial
on selected control theory topics

Digital LQG controller proposed to improve stabilization performance



Detailed diagram of digital LQG controller

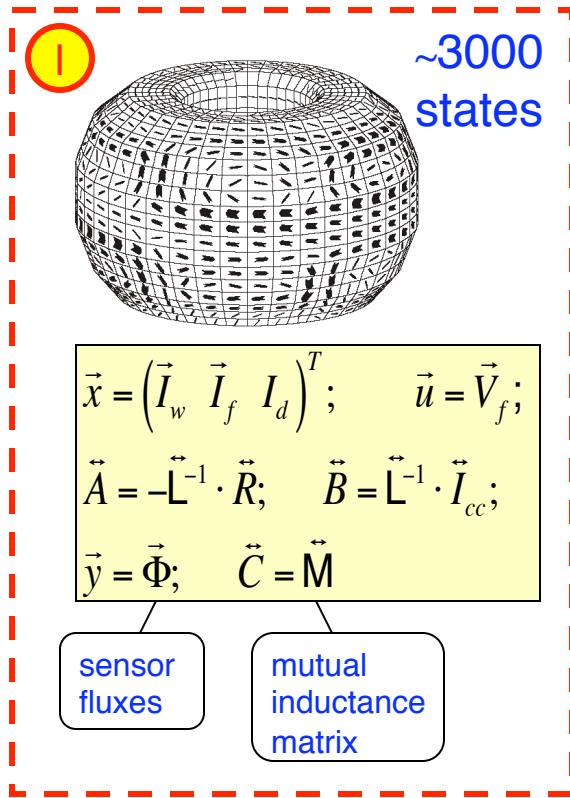
LQG Controller



- State estimate stored in observer provides information about amplitude and phase of RWM and takes into account wall currents
- Dimensions of LQG matrices depends on
 - State estimate (reduced balanced VALEN states)~10-20
 - Number of control coils ~3
 - Number of sensors ~ 12-24
- All matrixes in LQG calculated in advance using VALEN state-space for particular 3-D tokamak geometry, fixed plasma mode amplitude and rotation speed

Balanced truncation significantly reduces VALEN state space

Full VALEN computed wall currents:

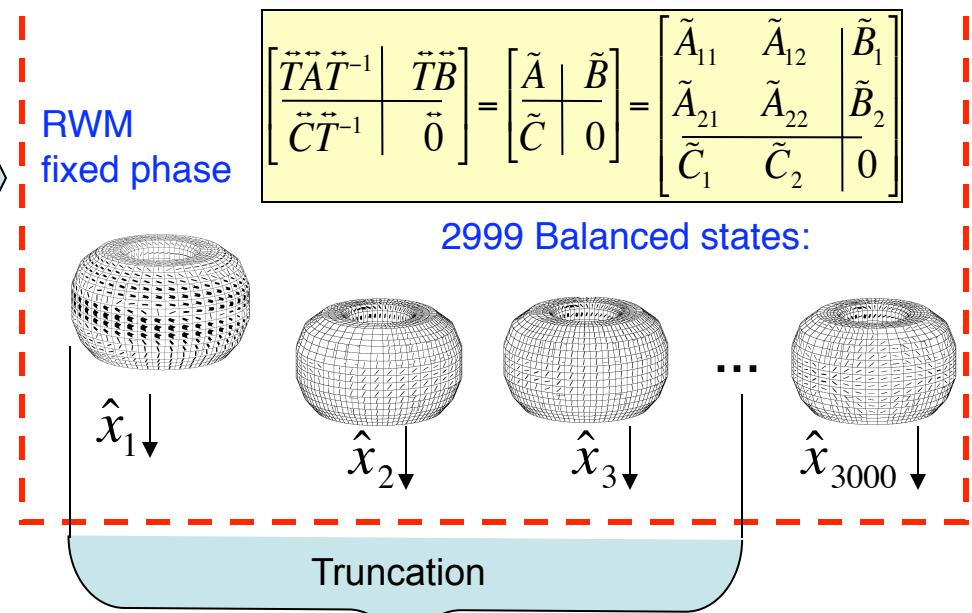


I What is VALEN state-space?

II How to find balancing transformation

III How to determine number of states to keep ?

Balanced realization:



2999 Balanced states:

~3-20 states

\vec{T} ?

$$\begin{bmatrix} \tilde{A}_{11} & \tilde{B}_1 \\ \tilde{C}_1 & 0 \end{bmatrix} \equiv \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}$$

State-space control approach may allow superior feedback performance

I

- VALEN circuit equations after including unstable plasma mode. Fluxes at the wall, feedback coils and plasma are

$$\vec{\Phi}_w = \vec{L}_{ww} \cdot \vec{I}_w + \vec{L}_{wf} \cdot \vec{I}_f + \vec{L}_{wp} \cdot \vec{I}_d$$

$$\vec{\Phi}_f = \vec{L}_{fw} \cdot \vec{I}_w + \vec{L}_{ff} \cdot \vec{I}_f + \vec{L}_{fp} \cdot \vec{I}_d$$

$$\vec{\Phi}_p = \vec{L}_{pw} \cdot \vec{I}_w + \vec{L}_{pf} \cdot \vec{I}_f + \vec{L}_{pp} \cdot \vec{I}_d$$

- Equations for system evolution

$$\begin{pmatrix} \vec{\mathcal{L}}_{ww} & \vec{\mathcal{L}}_{wf} & \vec{\mathcal{L}}_{wp} \\ \vec{\mathcal{L}}_{fw} & \vec{\mathcal{L}}_{ff} & \vec{\mathcal{L}}_{fp} \\ \vec{\mathcal{L}}_{pw} & \vec{\mathcal{L}}_{pf} & \vec{\mathcal{L}}_{pp} \end{pmatrix} \cdot \frac{d}{dt} \begin{pmatrix} \vec{I}_w \\ \vec{I}_f \\ \vec{I}_d \end{pmatrix} = \begin{pmatrix} \vec{R}_w & 0 & 0 \\ 0 & \vec{R}_f & 0 \\ 0 & 0 & \vec{R}_d \end{pmatrix} \cdot \begin{pmatrix} \vec{I}_w \\ \vec{I}_f \\ \vec{I}_d \end{pmatrix} + \begin{pmatrix} \vec{0} \\ \vec{V}_f \\ 0 \end{pmatrix}$$

- In the state-space form

$$\begin{cases} \dot{\vec{x}} = \vec{A}\vec{x} + \vec{B}\vec{u} \\ \vec{y} = \vec{C}\vec{x} \end{cases}$$

where $\vec{x} = (\vec{I}_w \ \vec{I}_f \ \vec{I}_d)^T$; $\vec{A} = -\vec{L}^{-1} \cdot \vec{R}$; $\vec{B} = \vec{L}^{-1} \cdot \vec{I}_{cc}$; $\vec{u} = \vec{V}_f$

& measurements $\vec{y} = \vec{\Phi}_s$ are sensor fluxes. State-space dimension ~ 1000 elements!

- Classical control law with proportional gain defined as $\vec{u} = -\vec{G}_p \vec{y}$

VALEN formulation with rotation allows inclusion of mode phase into state space*

- VALEN uses two copies of a single unstable mode with $\pi/2$ toroidal displacement of these two modes
- The VALEN uses two dimensionless parameter normalized torque “ α ” and normalized energy “ s ”

$$s = -\frac{\delta W}{L_B I_b^2 / 2} = -\frac{\text{energy required with plasma}}{\text{energy required WITHOUT plasma}}$$

$$\alpha = \frac{\text{torque}}{L_B I_b^2 / 2} = \frac{\text{torque on mode by plasma}}{\text{energy required WITHOUT plasma}}$$

- The VALEN parameters ‘ s ’ and ‘ α ’ together determine growth rate γ and rotation Ω of the plasma mode
- LQG is optimized off line for best stability region with respect to ‘ s ’ and ‘ α ’ parameters.

*Boozer PoP Vol6, No. 8, 3190 (1999)

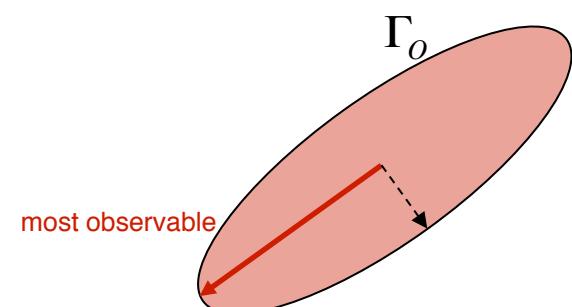
Measure of system controllability and observability is given by controllability and observability grammians

- Given stable Linear Time-Invariant (LTI) Systems

$$\begin{bmatrix} A & B \\ C & 0 \end{bmatrix}$$

- Observability grammian, $\Gamma_o = \int_0^\infty e^{A^T \tau} C^T C e^{A \tau} d\tau$, can be found by solving continuous-time Lyapunov equation, $A^T \Gamma_o + \Gamma_o A + C^T C = 0$, provides measure of output energy:

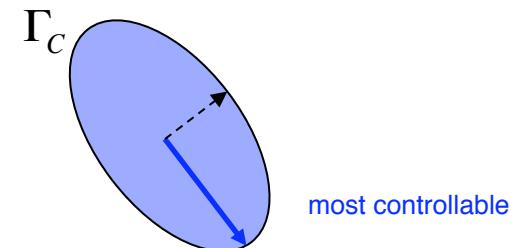
$$\|y\|_2^2 = x_0^T \Gamma_o x_0$$



- $\Gamma_o = U \Lambda_o U^T$ defines an “observability ellipsoid” in the state space with the longest principal axes along the most observable directions

- Controllability grammian, $\Gamma_c = \int_0^\infty e^{A \tau} B B^T e^{A^T \tau} d\tau$, can be found by solving continuous-time Lyapunov equation, $A \Gamma_c + \Gamma_c A^T + B B^T = 0$, provides measure of input(control) energy:

$$\|u\|_2^2 = x_0^T \Gamma_c^{-1} x_0$$



- $\Gamma_c = V \Lambda_c V^T$ defines a “controllability ellipsoid” in the state space with the longest principal axes along the most controllable directions

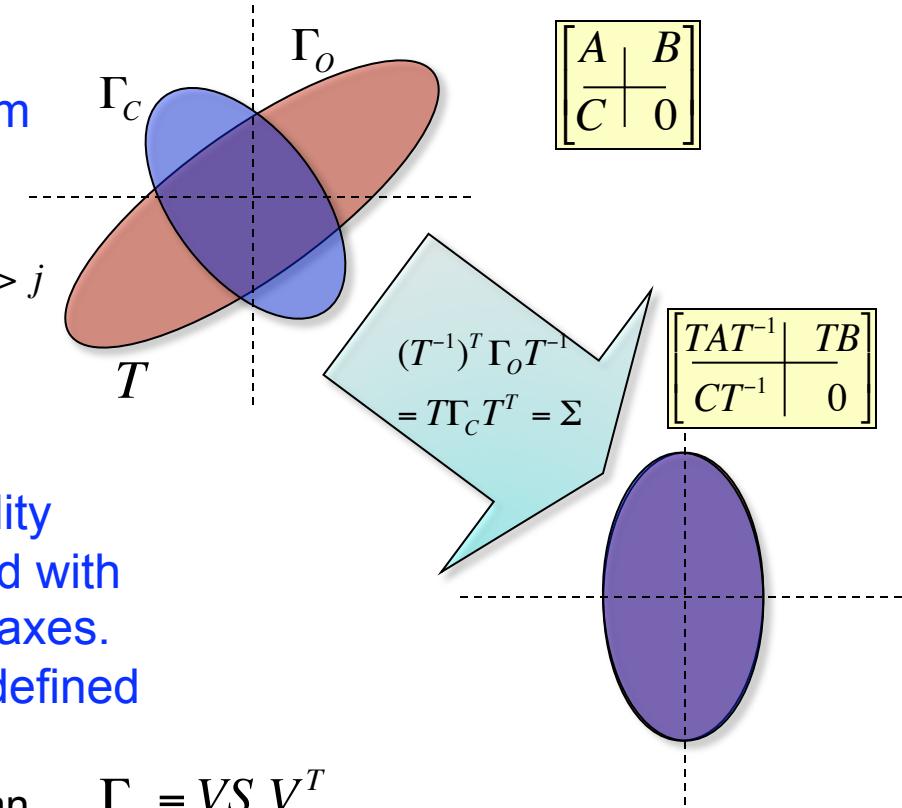
Balanced realization exists for every stable controllable and observable system

- Controllable, observable & stable system called balanced if

$$\tilde{\Gamma}_c = \tilde{\Gamma}_o = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_n \end{pmatrix} = \Sigma, \text{ where } \sigma_i > \sigma_j \text{ for } i > j$$

σ_i - Hankel Singular Values

- Balancing similarity transformation transforms observability and controllability ellipsoids to an identical ellipsoid aligned with the principle axes along the coordinate axes.
- The balanced transformation T can be defined in two steps:
 - Start with SVD of controllability grammian $\Gamma_c = VS_c V^T$ and define the first transformation as $T_1 := VS_c^{1/2}$
 - Perform SVD of observability grammian in the new basis: $\tilde{\Gamma}_o = T_1^T \Gamma_o T_1 = US_o U^T$ the second transformation defined as $T_2 := US_o^{-1/4}$
 - The final transformation matrix is given by: $T := T_1 T_2 = VS_c^{1/2} US_o^{-1/4}$



Determination of optimal controller gain for the dynamic system

For given dynamic process: $\dot{\vec{x}} = \vec{A}\vec{x} + \vec{B}\vec{u}$

Find the matrix \vec{K}_c such that control law: $\vec{u} = -\vec{K}_c \vec{x}$

minimizes Performance Index: $J = \int_t^T (\hat{\vec{x}}'(\tau) \vec{Q}_r(\tau) \hat{\vec{x}}(\tau) + \vec{u}'(\tau) \vec{R}_r(\tau) \vec{u}(\tau)) d\tau \rightarrow \min$

where tuning parameters are presented by \vec{Q}_r , \vec{R}_r - state and control weighting matrixes,

Solution:

Controller gain for the steady-state can be calculated as $\vec{K}_C = \vec{R}^{-1} \vec{B}_r^T \vec{S}$

Where \vec{S} is solution of the controller Riccati matrix equation

$$\vec{S}\vec{A}_r + \vec{A}_r^T \vec{S} - \vec{S}\vec{B}_r \vec{R}_r^{-1} \vec{B}_r^T \vec{S} + \vec{Q}_r = 0$$

Determination of optimal observer gain for the dynamic system

For given stochastic dynamic process:

$$\dot{\vec{x}} = \vec{A}_r \vec{x} + \vec{B}_r \vec{u} + \vec{\nu}$$

with measurements:

$$\vec{y} = \vec{C}_r \vec{x} + \vec{\omega}$$

Find the matrix \vec{K}_f such that observer equation

$$\dot{\hat{\vec{x}}} = \vec{A}_r \hat{\vec{x}} + \vec{B}_r \vec{u} + \vec{K}_f (\vec{y} - \vec{C}_r \hat{\vec{x}})$$

minimizes error covariance:

$$E\left\{(\vec{x} - \hat{\vec{x}})(\vec{x} - \hat{\vec{x}})^T \mid \vec{y}(\tau), \tau \leq t\right\} \rightarrow \min$$

where tuning parameters are presented by \vec{V} , \vec{W} - plant and measurement noise covariance matrix

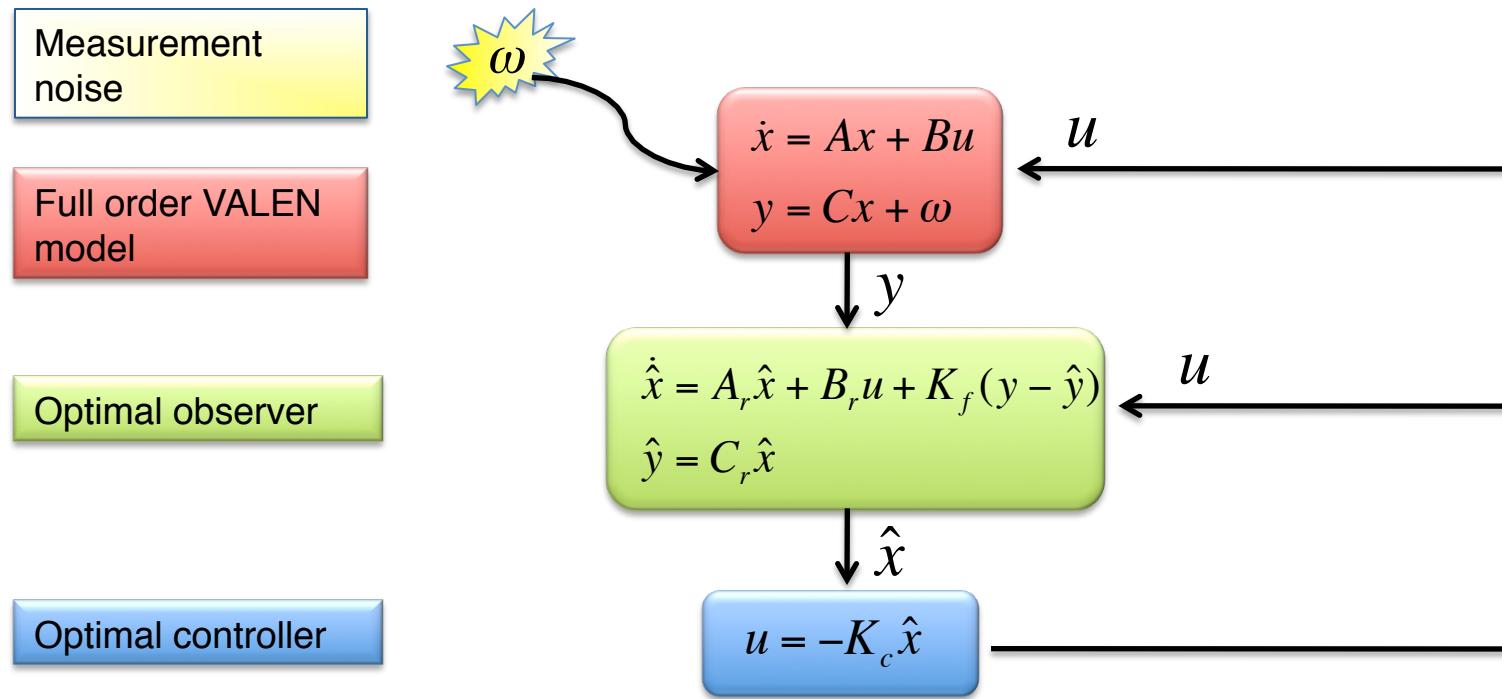
Solution:

Observer gain for the steady-state can be calculated as $\vec{K}_f = \vec{P} \vec{C}^T \vec{W}^{-1}$

Where \vec{P} is solution of the observer Riccati matrix equation

$$\vec{A}_r \vec{P} + \vec{P} \vec{A}_r^T - \vec{P} \vec{C}_r^T \vec{W}^{-1} \vec{C}_r \vec{P} + \vec{V}^T = 0$$

Closed system equations with optimal controller and optimal observer based on reduced order model



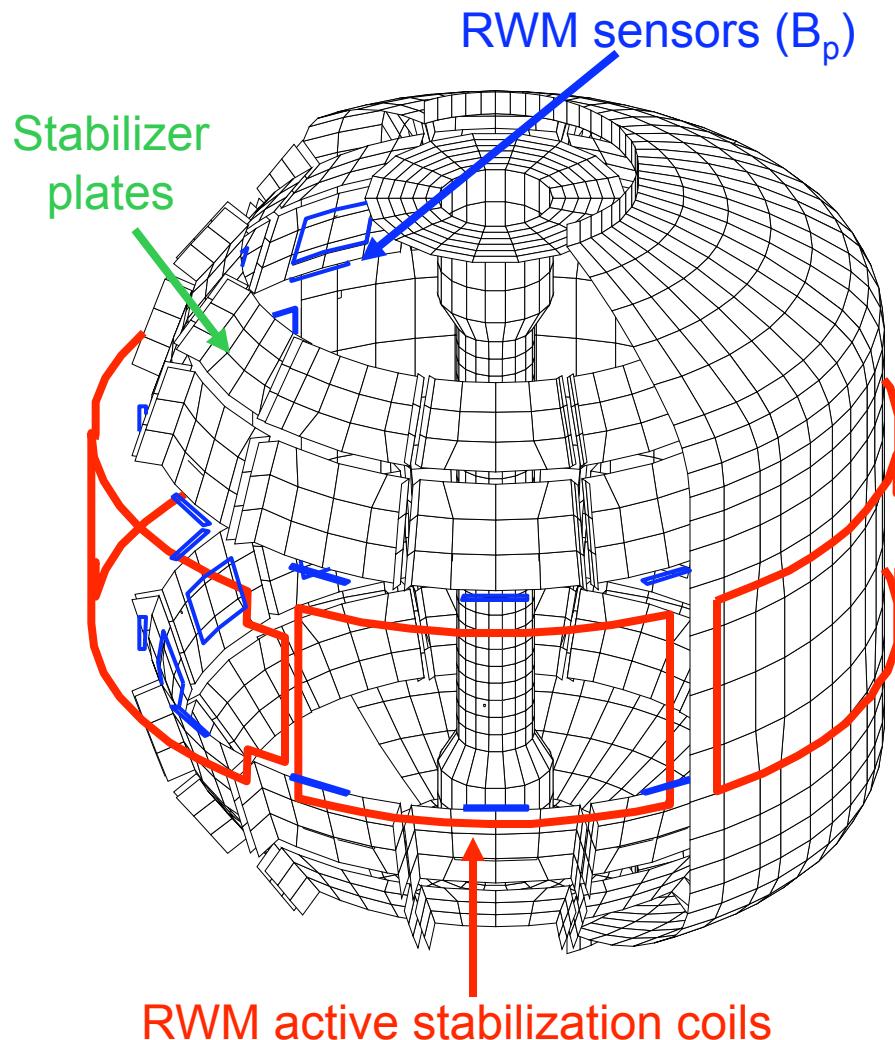
← Closed loop continuous system allows to

$$\begin{pmatrix} \dot{x} \\ \dot{\hat{x}} \end{pmatrix} = \begin{pmatrix} A & -BK_c \\ K_f C & F \end{pmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix} + \begin{pmatrix} 0 \\ K_f \end{pmatrix} \omega$$

$$F = A_r - K_f C_r - B_r K_c$$

- Test if Optimal controller and observer stabilizes original full order model and defined number of states in the LQG controller
- Verify robustness with respect to β_n
- Estimate RMS of steady-state currents, voltages and power

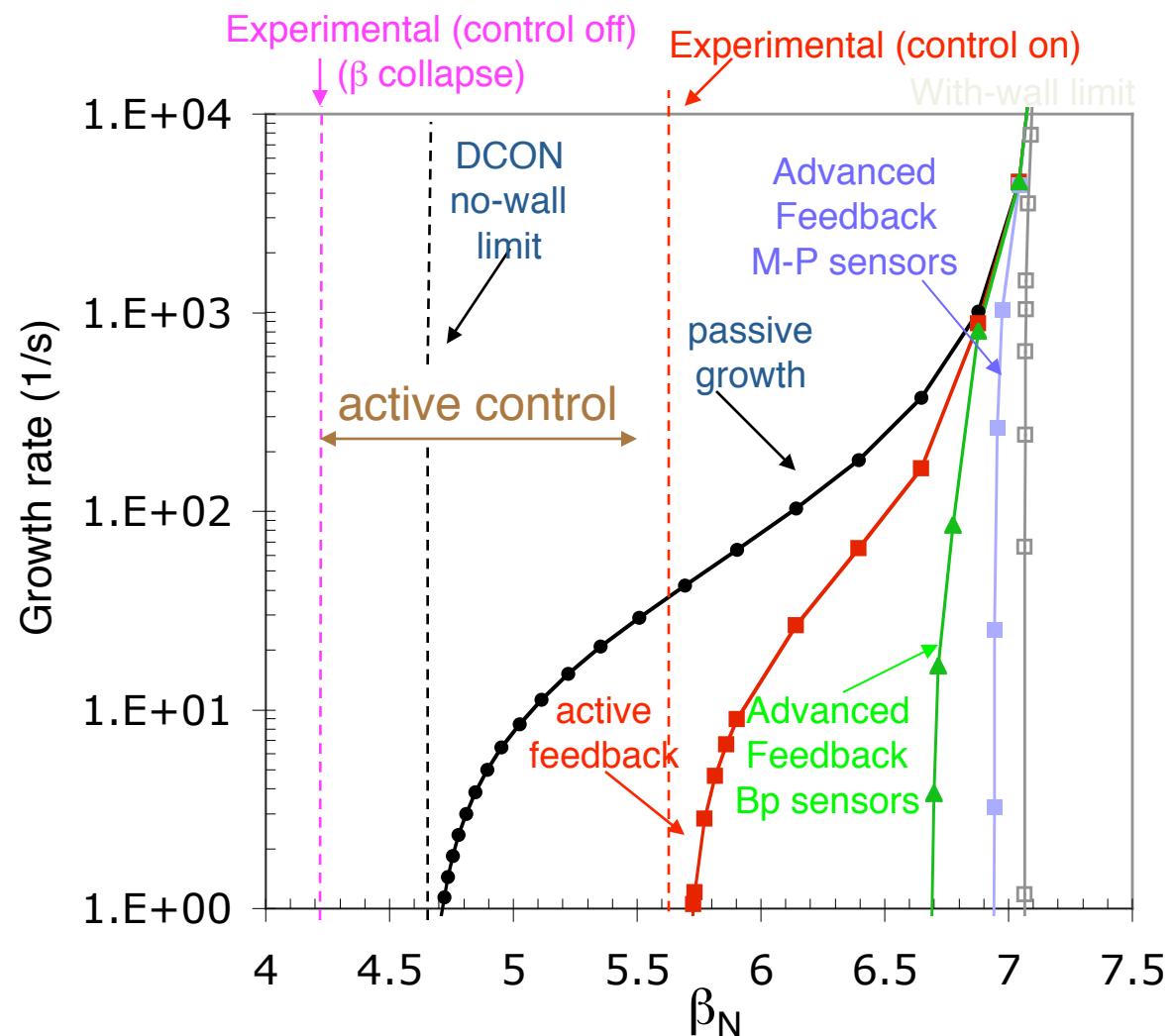
Advanced controller methods planned to be tested on NSTX with future application to KSTAR



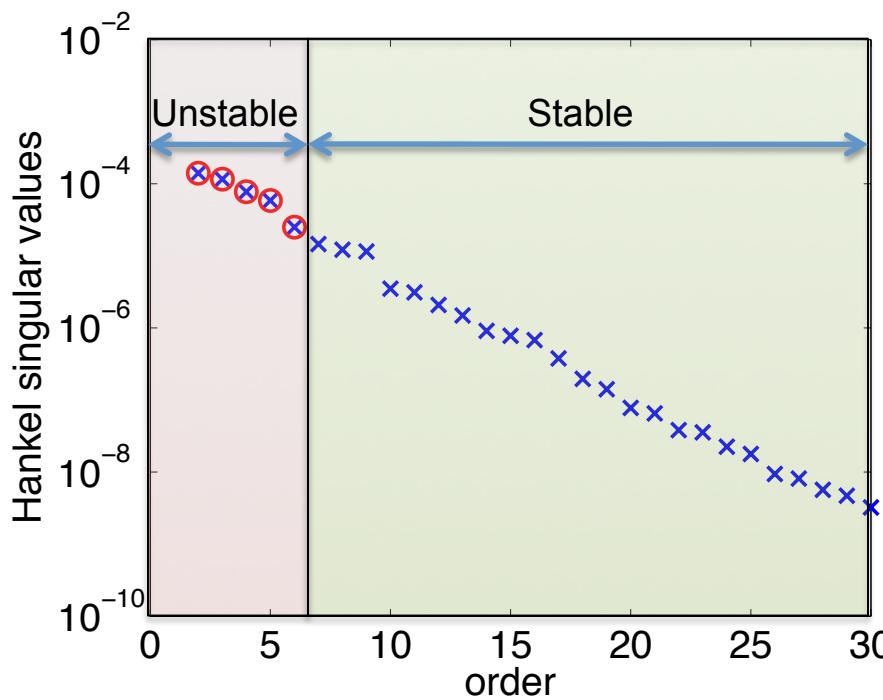
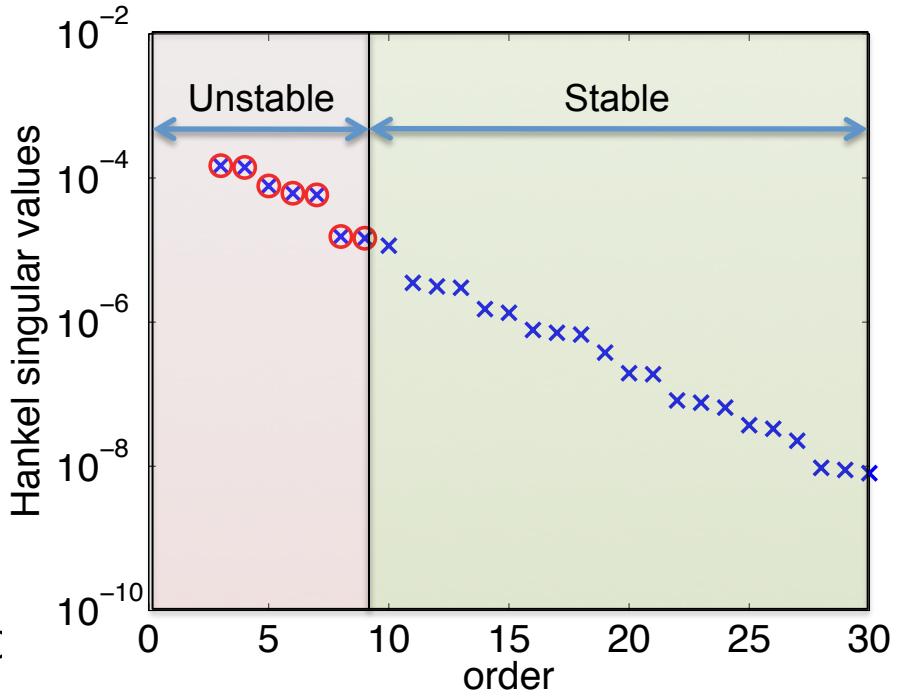
- VALEN NSTX Model includes
 - Stabilizer plates
 - External mid-plane **control coils** closely coupled to vacuum vessel
 - Upper and lower **B_p sensors** in actual locations
 - Compensation of control field from sensors
 - Experimental Equilibrium reconstruction (including MSE data)
- Present control system on NSTX uses Proportional Gain

Advanced control techniques suggest significant feedback performance improvement for NSTX up to $\beta_n/\beta_n^{\text{wall}} = 95\%$

- Classical proportional feedback methods
 - ❑ VALEN modeling of feedback systems agrees with experimental results
 - ❑ RWM was stabilized up to $\beta_n = 5.6$ in experiment.
- Advanced feedback control may improve feedback performance
 - ❑ Optimized state-space controller can stabilize up to $C_\beta = 87\%$ for upper Bp sensors and up to $C_\beta = 95\%$ for mid-plane sensors
 - ❑ Uses only 7 modes for LQG design

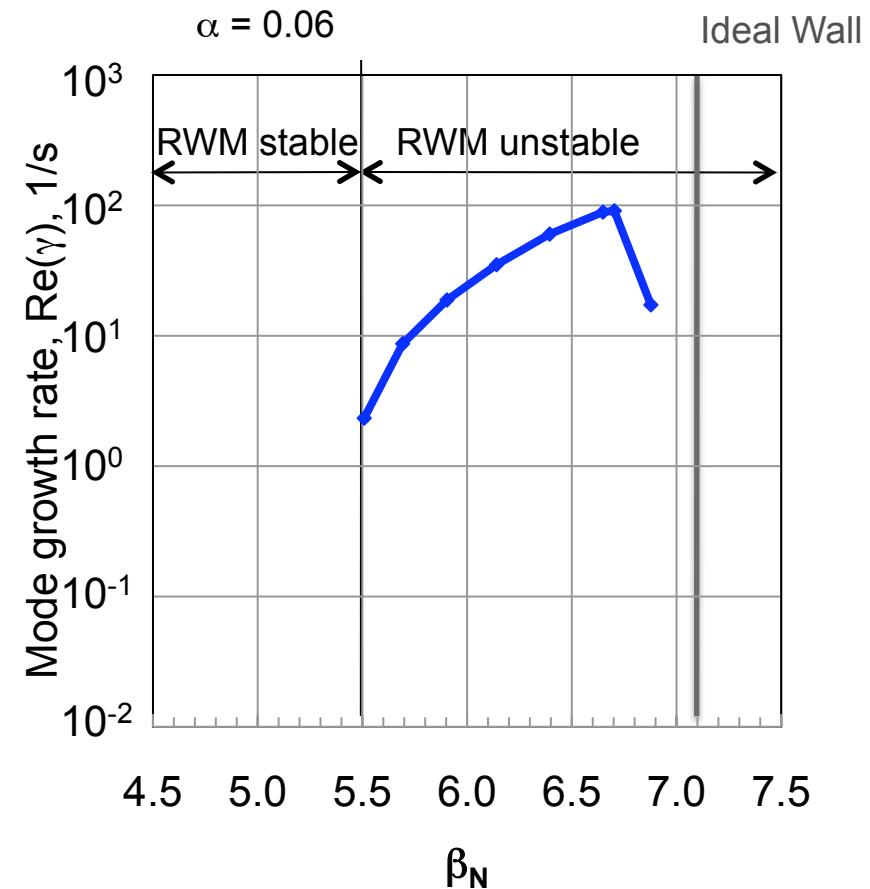


LQG with mode phase needs only 9 modes using B_p upper and lower sensors sums and differences

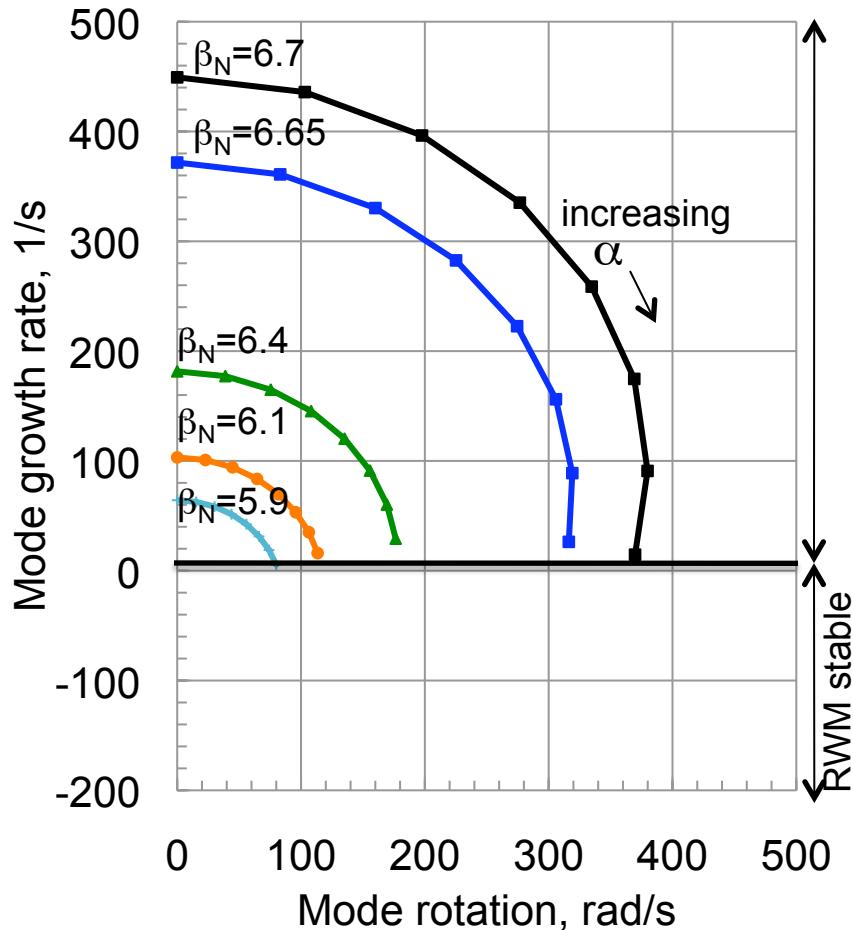
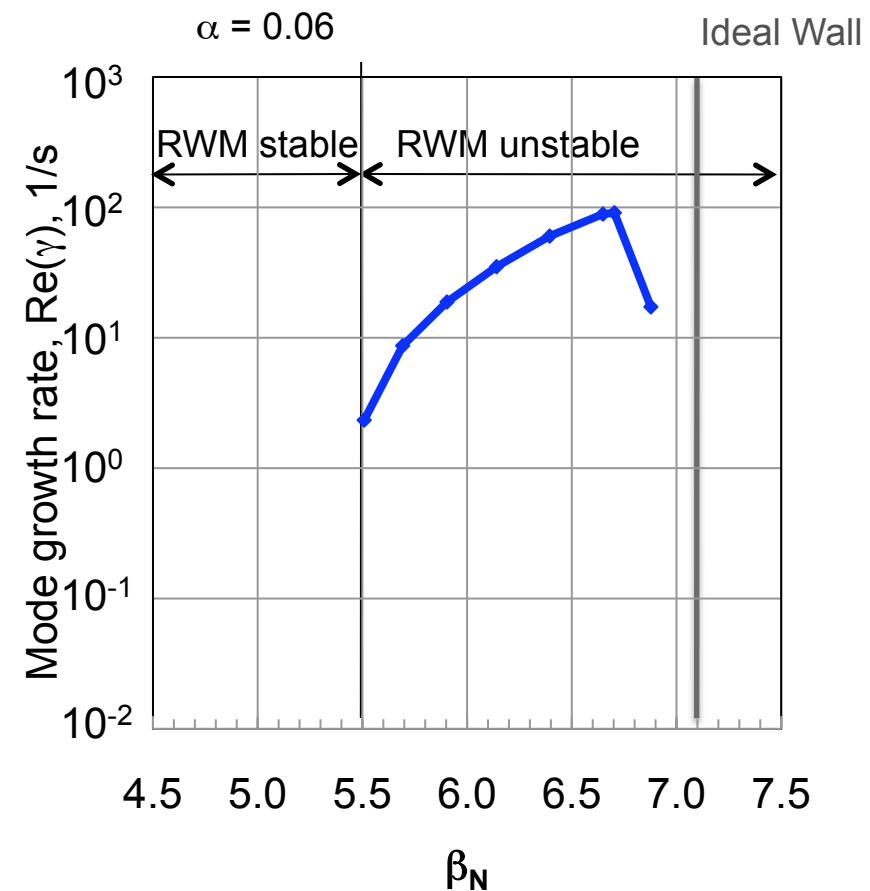


- Fixed mode (fixed phase)
- 7 states (1 unstable mode + 6 stable balanced states)
- LQG($\beta_N=6.7, N=7$)
- Rotating mode (phase included)
- 9 states (2 unstable modes + 7 stable balanced states)
- LQG($\alpha=0, \beta_N=6.7, N=9$)

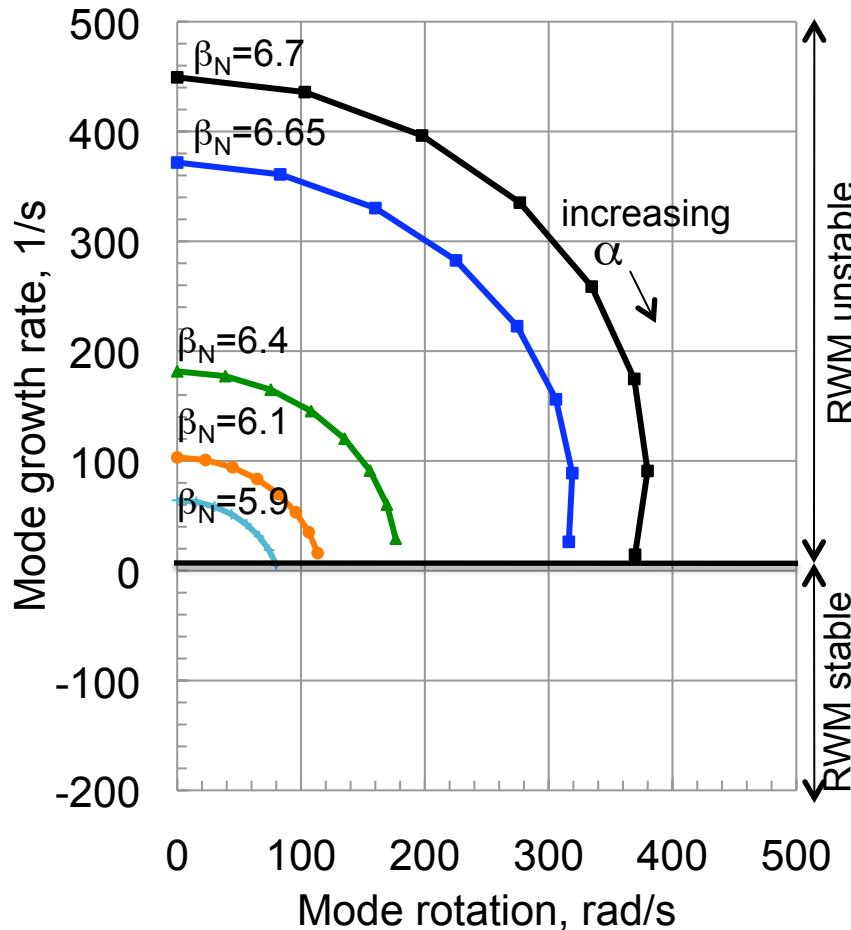
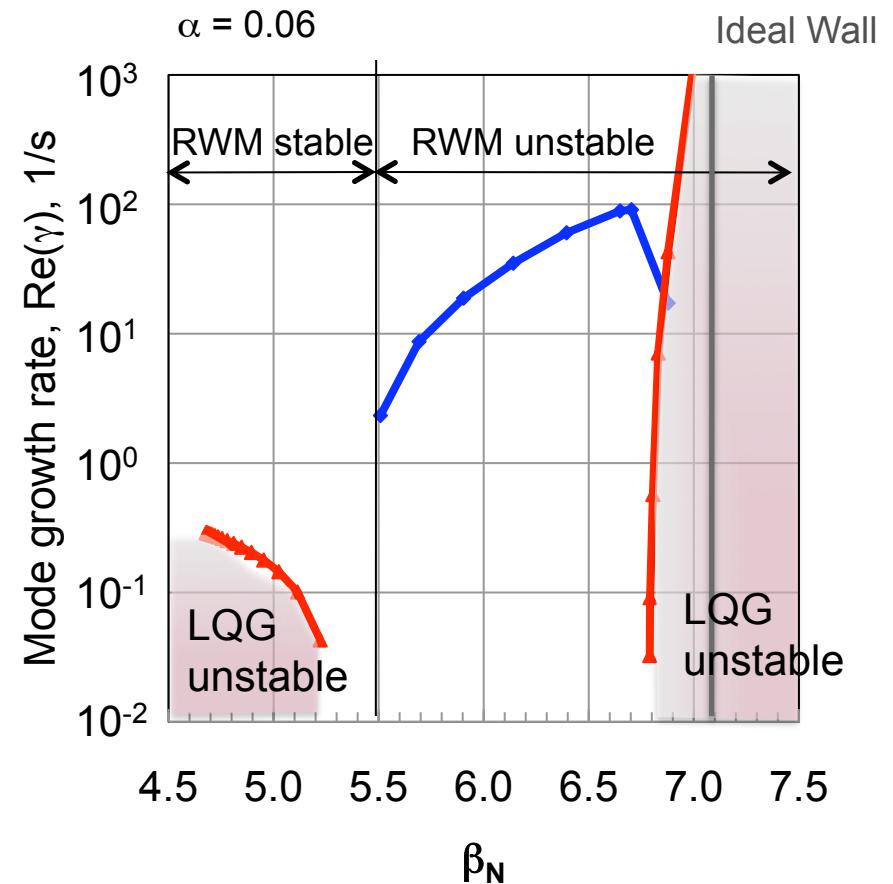
LQG(0,6.7,9) stabilizes slow rotating RWM mode up to $\beta_N < 6.7$



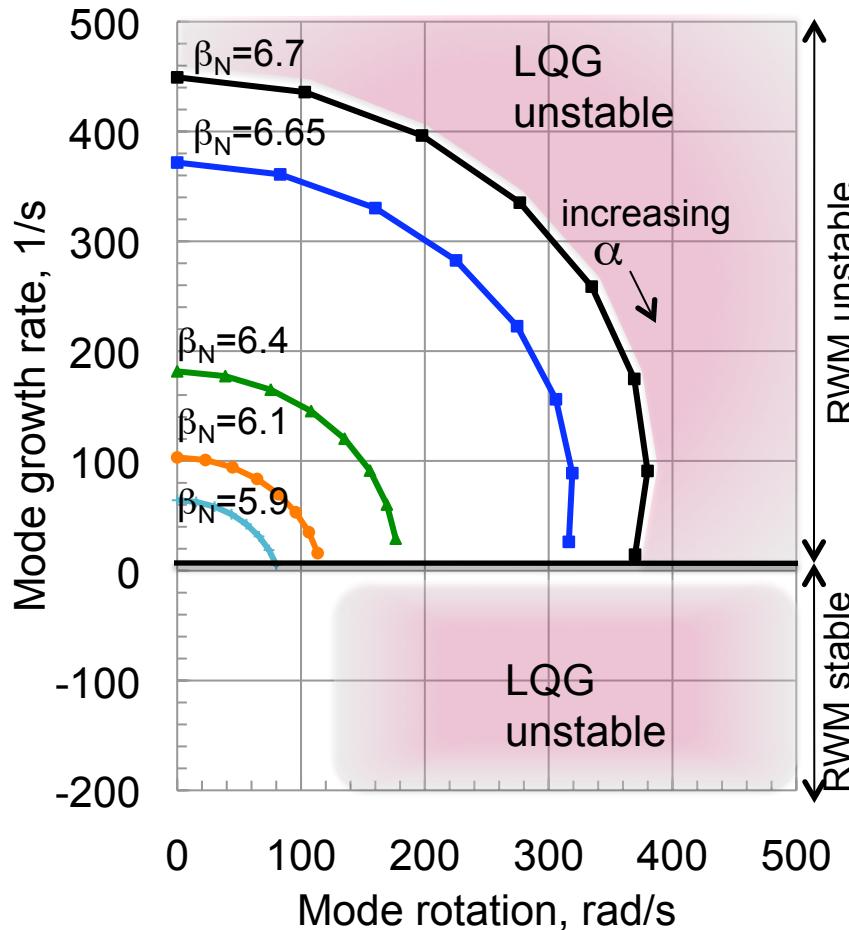
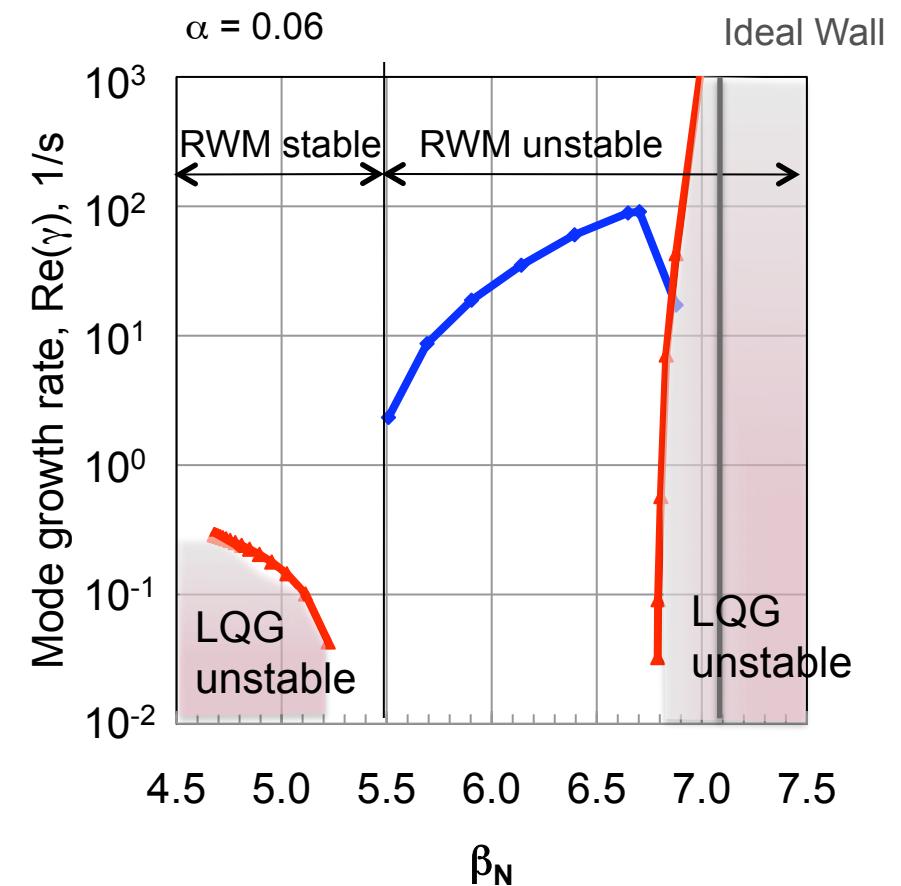
LQG(0,6.7,9) stabilizes slow rotating RWM mode up to $\beta_N < 6.7$



LQG(0,6.7,9) stabilizes slow rotating RWM mode up to $\beta_N < 6.7$

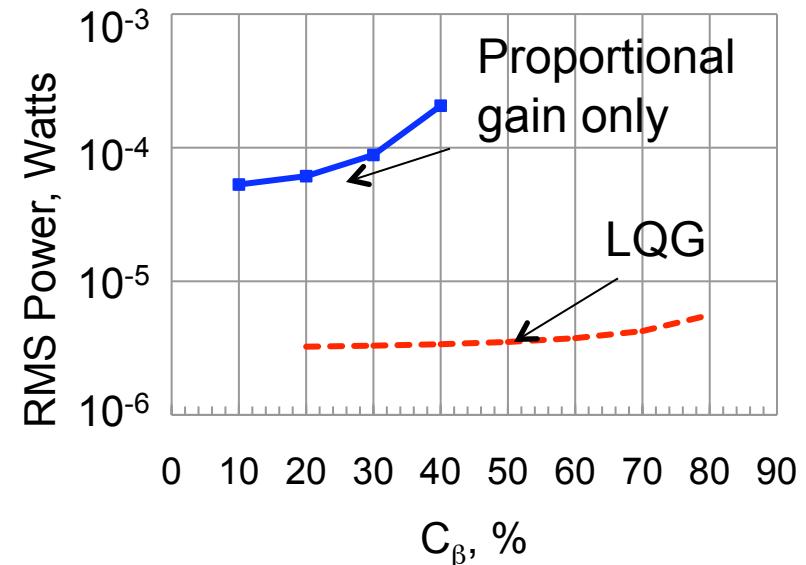


LQG(0,6.7,9) stabilizes slow rotating RWM mode up to $\beta_N < 6.7$



>90% power reduction for white noise driven time evolution of the controlled RWM

- White noise 7 gauss in amplitude with 5kHz sampling frequency
- Power is proportional to white noise amplitude² and sampling frequency⁻¹
- No filters on B_p sensors in proportional controller was used in this study



RMS values

C_β	I_{CC}, A	V_{CC}, V	P, Watts	I_{CC}, A	V_{CC}, V	P, Watts
10%	70%	84%	94%	66%	84%	93%
20%	73%	85%	95%	68%	84%	94%
30%	77%	86%	96%	73%	85%	95%
40%	85%	90%	98%	82%	89%	98%

Advanced controller study continuing...

- **Conclusions**
 - NSTX advanced controller with mode phase has been tested numerically, 9 modes needed, large stability region for slow rotating mode. (RWM is usually locked in the NSTX experiments.)
- **Next Steps**
 - Study LQG with different torque, to improve robustness with respect to β_N and mode rotation speed.
 - Off line comparison for mode phase and amplitude calculated with reduced order optimal observer and the present measured RWM sensor signal data SVD evaluation of $n = 1$ amplitude and phase from the experimental data
 - Redesign state-space for control coil current controller input
 - Analyze time delay effect on LQG performance

Thank you!