

MHD Control in TEXTOR

H R Koslowski¹, E Westerhof², M de Bock², I Classen², R Jaspers², Y Kikuchi¹, A Krämer-Flecken¹, A Lazaros², Y Liang¹, K Löwenbrück¹, A. Merkulov², S Varshney², M von Hellermann², R Wolf¹, O Zimmermann¹, TEXTOR team

 ¹Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, Association EURATOM-FZ Jülich, TEC, D-52425 Jülich, Germany
²FOM-Institute for Plasmaphysics 'Rijnhuizen', Assoc. EURATOM-FOM, TEC, PO Box 1207, 3430 BE Nieuwegein, The Netherlands, www.rijnh.nl

Tokamak EXperiment for Technology Oriented Research

Circular cross section limiter tokamak

- R = 1.75 m, a = 0.46 m
- *B*_t < 2.8 T
- *I*_p < 600 kA
- *t*_{pulse} < 10 s
- Neutral Beam Injection heating
 - 2 ion sources (co- and countercurrent direction)
 - 0 1.5 MW each
- Ion Cyclotron Resonance Heating
 - Up to 4 MW
- Electron Cyclotron Resonance Heating
 - 110 GHz, 400 kW, 200 ms
 - 140 GHz, 800 kW, 3 s

Dynamic Ergodic Divertor (DED)

16 helical (+2 compensation) coils on the HFS

Helical pitch resonant to q = 3field lines on HFS

Configurations

- 12/4 : PSI studies, island divertor properties
- 6/2 : confinement studies
- 3/1 : error field studies, mode stabilization

Currents and Frequencies

- Up to *n* * 3.75 kA / coil
- dc or low frequency (2Hz)
- ac (1 .. 10kHz)
- Field rotation in co- and counter current direction

3/1 configuration

DED in 3/1 configuration has strong 2/1 sideband

Amplitudes of the n = 1 Fourier components of the perturbation field Standard plasma equilibrium + vacuum DED field ($q_a^{cyl}=4.5$)

Locked 2/1 tearing mode is excited by the DED

The DED allows to excite an initially locked 2/1 tearing modes

H R Koslowski et al 2004 ECA 28G P1.124

With DED in ac mode the tearing mode is "locked" to the external (rotating) perturbation

Discharge scenario for mode excitation studies

Tearing mode studies using the DED

- DED in 3/1 configuration allows to create 2/1 tearing modes on purpose
- dc and ac operation at 1 or 3.75 kHz with co- and counter current rotation
- Mode is locked to external perturbation, i.e. mode rotates in the tokamak frame with the DED frequency
- Radial location of islands is well known
- Phase (X- and O-point of the island) is determined by external DED currents
- Well defined experiments to study mode onset thresholds and mode stabilization by ECRH / ECCD can be performed on TEXTOR

Parametric dependencies of perturbation field penetration

Almost *usual* behaviour of parametric dependencies of error field thresholds for tearing mode excitation

H R Koslowski et al 2004 ECA 28G P1.124

Plasma rotation scan with dc and ac DED • $P_{tot} = const$

• +1 kHz ac (counter)

• dc

- no 2/1 mode • -1 kHz ac
 - (co)
- Minimum shifts by DED frequency
- Resonance H R Koslowski et al 2006 NF 46 L1

Dependence of the DED induced force on the MHD frequency

Force balance explains measured threshold

Tearing mode unlocks delayed with respect to the switch-off of the external perturbation field

Locked mode spins up when dominating co-NBI heating is switched off in low-density plasmas (n_e < 3.6x10¹⁹m⁻³)

Y Liang et al 2005 ECA 29C P4.060

Mode unlocking shows equivalent beta dependence as the mode onset threshold

This behaviour is most likely a rotation effect: f^* (in counter direction) increases with β and increases the threshold

Y Liang et al 2004 *ECA* **28G** P1.126

Density dependence of locked mode threshold

Resonance-like behaviour of mode excitation threshold at very low electron density

K Löwenbrück 2007 PhD Thesis U Bochum

Rotating perturbation fields can prevent locked mode disruptions

Sawtooth control experiments

- Slow magnetic field ramps to scan the EC deposition through the plasma
- Variation of toroidal injection angle to vary EC driven current

Example: co-current drive

Effect of current drive separated from effect of concurrent heating by normalization of sawtooth period response function on a discharge with pure heating

- Effect on sawtooth period proportional to effect on shear evolution
- In qualitative agreement with Porcelli's critical shear sawtooth model
- Required non-inductive current for sawtooth control scales like:

$$I_{\rm cd} > 2 \ (\Delta r/r_{\rm q=1})^2 \ I_{\rm q=1}$$

A Merkulov et al 2004 Proc. Int. Varenna Workshop 279

Tearing mode control: scan of deposition radius (dc ECRH/ECCD)

Phase scan (ac ECRH/ECCD)

Island generated with DED and kept rotating at 1 kHz

Phase derived from currents in DED coils

Heating inside the Opoint of the island is more effective than heating at the X-point

E Westerhof et al 2006 subm. To NF

Main cause of stabilization is heating inside the island

- Temperature peaking inside island has been observed by ECE-Imaging (and confirmed by Thomson scattering)
- A pronounced T_e peaking of ~ 10% (during first 10 ms after ECRH switch-on)

I Classen et al 2006 Proc. EC-14

Mechanism for ECRH / ECCD Mode stabilization

Reduced power (200 kW) enhances contrast

- $J_{cd,max}$ at q=2 is 3% of $J_{q=2}$
- Extrapolation to ITER
 - 20 MW ECRH system for NTM stabilization
 - Concurrent heating will especially help in the initial stage with large island width
 - For $\chi_e = 0.1 \text{ m}^2/\text{s}$, the temperature perturbation in the island is predicted to be ~1 keV, and the effect of the heating is as large as the effect of the ECCD
 - For $\chi_e = \chi_{e,q=3/2} = 0.5 \text{ m}^2/\text{s}$, still a 20% effect remains

E Westerhof et al 2006 subm. To NF

Summary and Conclusions

- TEXTOR with NBI, ECRH, ICRH and DED allows detailed studies of mode excitation by perturbation fields and mode stabilisation by electron cyclotron heating and current drive
- The frequency match between external perturbation field and MHD frequency of the mode determines the excitation threshold
- Dynamic (rotating) perturbation fields can stabilise locked modes and prevent disruptions
- Sawtooth control in qualitative agreement with Porcelli's model
- The 2/1 tearing mode is predominantly suppressed by heating inside the island and by the corresponding temperature increase in the O-point
- Heating inside the island will have a considerable influence on NTM stabilisation on ITER