

Resistive Wall Mode Stabilization Physics in NSTX

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank. Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

A.C. Sontag¹, S.A. Sabbagh¹, R.E. Bell², J.M. Bialek¹, D.A. Gates², A.H. Glasser³, J.E. Menard², K.L. Tritz⁴

¹Columbia University ²Princeton Plasma Physics Laboratory ³Los Alamos National Laboratory ⁴Johns Hopkins University

MHD Mode Control Workshop

November 6th - 8th 2006 Princeton, New Jersey

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

Long-Wavelength MHD Stability at High Pressure Required for ITER and Other Next-Step Devices

Motivation

- \Box resistive wall mode (RWM) can cause plasma disruption at high β
- RWM can be stabilized passively and/or actively
- □ low rotation (ω_{ϕ}) in future devices increases susceptibility to RWMs

Understanding the passive stabilization physics that determines RWM stability is important to determine requirements for RWM active stabilization

- NSTX is examining passive stabilization physics by applying n = 1 - 3 fields in order to study:
 - $\square \omega_{\phi}$ at rational surface vs. ω_{ϕ} profile for stability determination

critical ω_{ϕ} for passive stability (Ω_{crit})

 $\Box \Omega_{crit}$ correlation with energy dissipation physics models

Non-axisymmetric coil enables key physics studies on NSTX

RWM active stabilization

Midplane control coil similar to ITER port plug designs

Plasma rotation control

□ A tool to slow ω_{ϕ} by resonant or non-resonant fields

RWM passive stabilization

- Plasma rotation profile, ion collisionality, v_{ii}, important for stability
- Non-resonant ω_φ braking preserves stability boundary

RWM actively stabilized at low, ITER-relevant rotation

Sabbagh, et al., PRL 97 (2006) 045004.

Rotation profile shape important for RWM stability

■ Benchmark profile for stabilization is $\omega_c = \omega_A/4q^2*$

predicted by semi-kinetic theory**

- Rotation outside q = 2.5 not required for stability
 - □ n = 3 used to brake stable ω_{ϕ} below ω_c
- □ Scalar Ω_{crit} / ω_A at q = 2, > 2 not a reliable criterion for stability
 - □ variation > $\Delta \omega_{\phi}$ in one time step
 - consistent with distributed dissipation

*A.C. Sontag, et al., Phys. Plasmas **12** (2005) 056112. **A. Bondeson, M.S. Chu, Phys. Plasmas **3** (1996) 3013.

<u>*Ocrit*</u> not correlated with Electromagnetic Torque Model

- Rapid drop in ω_{ϕ} when RWM unstable may seem similar to 'forbidden bands' theory
 - model: drag from electromagnetic torque on tearing mode*
 - Rotation bifurcation at ω₀/2 predicted
- No bifurcation at ∞₀/2 observed
 - no correlation at q = 2 or further into core at q = 1.5
 - Same result for n = 1 and 3 applied field configuration

NSTX Ω_{crit} Database

(ω_0 = steady-state plasma rotation)

*R. Fitzpatrick, Nucl. Fusion **33** (1993) 1061

$\underline{\Omega}_{crit}$ Not Determined By n = 3 Braking Field Magnitude

- Applied n = 3 braking field varied in similar discharges
 - non-resonant field should not perturb RWM stability boundary
- $\square \Omega_{crit} / \omega_A \text{ unchanged within } \Delta \omega_{\phi} \text{ during one time step }$
 - time of RWM onset delayed at lower field

Consistent with RWM stability boundary that is unaffected by applied field

Increased v_{ii} Leads to Decreased Ω_{crit}

- Plasmas with similar Alfven velocity, v_A, compared
 - \Box $I_p \& B_t$ scaled for constant q
- Consistent with neoclassical viscous dissipation model
 - □ at low γ , increased v_{ii} leads to lower Ω_{crit}
 - modification of Fitzpatrick "simple" model

(K. C. Shaing, Phys. Plasmas 11 (2004) 5525.)

□ Similar result for neoclassical flow damping model at high collisionality ($v_{ii} > 1/\tau_{transit}$)

(R. Fitzpatrick, et al., Phys. Plasmas 13 (2006) 072512.)

Scan performed at 121093 @ 0.515 s 🔶 121090 @ 0.605 s 121100 @ 0.385 s \Box v_A , T_i , ρ all varying

Weak Correlation Between Ω_{crit} and v_A

□ General trend with *v*_{ii} remains consistent

constant q

- □ higher v_{ii} cases have lower Ω_{crit}
- Need to account for v_{ii} effects to accurately determine v_A dependence
 - when does v_{ii} effect saturate?

<u>Understanding RWM Passive Stability Physics Critical</u> to Advanced Operation in Next-Step Toroidal Devices

- Scalar Ω_{crit} inadequate to define RWM passive stability boundary
 - Significant variation in Ω_{crit} observed at q = 2 surface
 - □ large rotation at q > 2 not required for RWM passive stability
- NSTX Ω_{crit} data inconsistent with EM torque model
 more complete RWM physics model needed for ITER predictions
- □ Applied *n*=3 field magnitude does not determine Ω_{crit} □ Ω_{crit} from non-resonant braking extrapolates to other devices
- \Box Decreased v_{ii} leads to increased Ω_{crit}
 - increased rotation required for RWM stability in ITER

