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State of modern control methodologies

in plasmas and tokamaks

A.K.Sen, Z.Sun, R.Longman
 In the dim past

— State feedback and Kalman filter in plasmas

» A.K.Sen, “state feedback control of multimode plasma instabilities”,
IEEE Trans. Plasma Sci., PS-7, 116-119 (1979).

— And others...

— Optimal control in plasmas

« A.K.Sen, “Optimal control of ----- ” IEEE Trans. Plasma Sci., PS-9,
41-45 (1981).
— And others...

— Followed by a long period of benign neglect



* Recently

— State feedback and Kalman filters: beginning of new
work (APS DPP06)

 Sporadic citations of original work is perplexing

— Optimal control (Inclusion of broad-band noise) in

RWM

* Sen, A.K., Nagashima, M., Longman, R.W., (2003), “Optimal control
of tokamak resistive wall modes in the presence of noise,” Phys.
Plasmas, Vol. 10, No. 11, 4350

 Fringe benefit: optimal implies some degree of robustness

— Beginning of recent work (APS DPP06)

« Again sporadic citations of original work is perplexing



* Adaptive control
— No work reported so far

— Necessary for any system which is not totally
stationary, especially appropriate for long pulse ITER
operation

— Recently published papers (including noise and optimal
control)

e Sun, Z., Sen, A.K., and Longman, R.-W., (2006), “Adaptive
optimal stochastic state feedback control of resistive wall
modes in tokamaks,” Phys. Plasmas, Vol. 13, No. 1, 012512

e Sun, Z., Sen, A.K., and Longman, R.-W., (2006), “Adaptive
optimal output feedback control of resistive wall modes in
tokamaks,” Phys. Plasmas, Vol. 13, No. 9, 092508

— Need serious follow up



Neural network (NN) control
Z.Sun, A.K.Sen

* Neural network (NN) control

— No work reported so far
— Naturally adaptive
— System 1dentification and control on the same chip

— Much faster than sequential algorithms due to
massively parallel architecture

— Suitable for multimode RWM in ITER

— A preliminary work on this 1s reported briefly in the
next paper, validating the promise
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Fig. 1 General functionalities of a neuron



Neural network: general architecture
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Fig. 2 A diagram of the general architecture of artificial
neural networks. Learning/optimality/adaptivity all via
adjustment of weights Wij;



General neural network learning
via back propagation
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Architecture of back propagation. Very useful for nonlinear
filtering of colored noise (“ELMs”)
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Adaptive control via general
neural network
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Far too general and complicated. Need specialized architecture.
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Partial use of neural network 1n
optimal state feedback control
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Fig. 3 Adaptive optimal partly NN based controller
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Spemahzed NN archltecture for RWM
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Fig. 4 A neural network architecture, specialized for RWM.
LNNSs are linear Hopfield networks.
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Stabilization of the time-invariant RWM
by NN hardware (AAC)
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Stabilization of the time-varying RWM
by NN hardware (AAC)

HMP# Discrete Hopfield Neural Hetwork Example
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Control of drift wave turbulence
A.K.Sen

* In CLM we have experimentally stabilized many
types of drift waves (TE, TI, ITG, etc).
However,the spectra always contained a few
prominent peaks (modes).

» Strong reservations about control of turbulence in
tokamaks: nearly continuous spectra with
hundreds of modes.

* Now there may be a ray of hope: via neural
network control
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Neuro-control of drift wave turbulence

* Assumptions and models:
— Total number of modes (~100)

— Identify mode packets of strongly coupled triplets (via
off-line learning)

— Choose a subset of large energy triplets (via off-line
learning)

— Feedback stabilize the above via NN of specialized
architecture

— Adjust the above online via adaptive features of NN
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Cosine half of FFT state feedback NN
with mode shaping and mode coupling
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A numerical experiment on
dissipative drift wave turbulence

C. Figarella, A.K.Sen, S.Benkadda

Univ. of Marseille & CEA,
Cadarache, France
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Hasegawa, Wakatani model

E‘ q q . . 9 9 3
E[H —pAID)— pTe - V)P +vATD = p7n — p AL D, D},

|'i-'I

! 32
I__n'ﬁ.ll:l} + iy —5
ol 05"

n—&d) = pz{;‘ll{ﬁ, D},

where n and ® are the density and potential fluctuations,

and the Poisson brackets are defined by
af dg  dg df

{f } ax ay X d.‘f
a d
Kk =7xVinng, V) = — + —.
X 'y

18



Eigenfunctions
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with
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Retain only 4 modes and add ‘modal’ feedback

X=v(R—DX+3fZU - XY — jX(t — 1),
V= —e¥ +1X* —2jY(t —1),
I
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WITHOUT
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Figure 1. Amplitundes (X, ¥, &, I7) in the chaotic case B = 1.8729.
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WITH FEEDBACK: t1=0
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Figure 3. Amplitudes in the chaotic case without time delay, we start feedback control at ime

=500, j = (R — f)yv ([l growth rate set to zero).
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WITH FEEDBACK ; t~0.83 o,

R=1.8729 =167

0 200 400 600 200 1000
t

A=1.5729, =167

0 200 400 G600 200 1000

Figure 5. Amplitudes in the chaotic case with a time delay of t = 0.835w; !, feedback starts at

time { = 500 and control is successful.
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Time Evolution of Fluctuation Energy
Fully Turbulent Case
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Conclusions

 Now we can and should go beyond P
controllers

* We (the community) may be ready to utilize the
advanced control tools for ITER

— State feedback with Kalman filter
— Optimal feedback

— Stochastic formulation of systems with noise
* New challenges
— Adaptive feedback

— Neural networks can potentially have substantial impact
on all of the above: need a lot of work

— Neural network for control of plasma turbulence: a
remote promise!
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