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State of modern control methodologies 
in plasmas and tokamaks 

A.K.Sen, Z.Sun, R.Longman
• In the dim past

– State feedback and Kalman filter in plasmas
• A.K.Sen, “state feedback control of multimode plasma instabilities”, 

IEEE Trans. Plasma Sci., PS-7, 116-119 (1979).
– And others…

– Optimal control in plasmas
• A.K.Sen, “Optimal control of -----”, IEEE Trans. Plasma Sci., PS-9, 

41-45 (1981).
– And others…

– Followed by a long period of benign neglect
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• Recently
– State feedback and Kalman filters: beginning of new 

work (APS DPP06)
• Sporadic citations of original work is perplexing

– Optimal control (Inclusion of broad-band noise) in 
RWM

• Sen, A.K., Nagashima, M., Longman, R.W., (2003), “Optimal control 
of tokamak resistive wall modes in the presence of noise,” Phys. 
Plasmas, Vol. 10, No. 11, 4350

• Fringe benefit: optimal implies some degree of robustness

– Beginning of recent work (APS DPP06)
• Again sporadic citations of original work is perplexing
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• Adaptive control
– No work reported so far
– Necessary for any system which is not totally 

stationary, especially appropriate for long pulse ITER 
operation

– Recently published papers (including noise and optimal 
control)

• Sun, Z., Sen, A.K., and Longman, R.W., (2006), “Adaptive 
optimal stochastic state feedback control of resistive wall 
modes in tokamaks,” Phys. Plasmas, Vol. 13, No. 1, 012512

• Sun, Z., Sen, A.K., and Longman, R.W., (2006), “Adaptive 
optimal output feedback control of resistive wall modes in 
tokamaks,” Phys. Plasmas, Vol. 13, No. 9, 092508

– Need serious follow up
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Neural network (NN) control
Z.Sun, A.K.Sen

• Neural network (NN) control
– No work reported so far
– Naturally adaptive
– System identification and control on the same chip
– Much faster than sequential algorithms due to 

massively parallel architecture
– Suitable for multimode RWM in ITER 
– A preliminary work on this is reported briefly in the 

next paper, validating the promise
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Fig. 1 General functionalities of a neuron
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Fig. 2 A diagram of the general architecture of artificial 
neural networks. Learning/optimality/adaptivity all via 
adjustment of weights Wij

Neural network: general architecture
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General neural network learning 
via back propagation

Architecture of back propagation. Very useful for nonlinear 
filtering of colored noise (“ELMs”)

Gradient 
descent 
method
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Adaptive control via general 
neural network

Far too general and complicated. Need specialized architecture.
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Partial use of neural network in 
optimal state feedback control
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Fig. 3 Adaptive optimal partly NN based controller
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Specialized NN architecture for RWM

Fig. 4 A neural network architecture, specialized for RWM. 
LNNs are linear Hopfield networks.

Diophantine eq.

Output feedback 
control design

Input

Output
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Stabilization of the time-invariant RWM 
by NN hardware (AAC)

Steady-state value: 
4.5*10-4Weber

RMSnoiseψ =2*10-4Weber
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Stabilization of the time-varying RWM
by NN hardware (AAC)

Steady-state value: 
1.9*10-3Weber
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Control of drift wave turbulence
A.K.Sen

• In CLM we have experimentally stabilized many 
types of drift waves (TE, TI, ITG, etc). 
However,the spectra always contained a few 
prominent peaks (modes). 

• Strong reservations about control of turbulence in 
tokamaks: nearly continuous spectra with 
hundreds of modes.

• Now there may be a ray of hope: via neural 
network control
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Neuro-control of drift wave turbulence

• Assumptions and models:
– Total number of modes (~100)
– Identify mode packets of strongly coupled triplets (via 

off-line learning)
– Choose a subset of large energy triplets (via off-line 

learning)
– Feedback stabilize the above via NN of specialized 

architecture
– Adjust the above online via adaptive features of NN



16

Cosine half of FFT state feedback NN 
with mode shaping and mode coupling
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A numerical experiment on 
dissipative drift wave turbulence

C. Figarella, A.K.Sen, S.Benkadda
Univ. of Marseille & CEA, 

Cadarache, France
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Hasegawa, Wakatani model

where n and Φ are the density and potential fluctuations, 
and the Poisson brackets are defined by
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Eigenfunctions

Retain only 4 modes and add ‘modal’ feedback
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WITHOUT   FEEDBACK
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WITH   FEEDBACK ;  τ = 0
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WITH   FEEDBACK ;  τ ~ 0.83 ω*
-1



23

Time Evolution of Fluctuation Energy 
Fully Turbulent Case

Without Feedback
Value of α =0.05 without time delay,

feedback starts at time t =100

With Feedback
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Conclusions
• Now we can and should go beyond PID 

controllers
• We (the community) may be ready to utilize the 

advanced control tools for ITER
– State feedback with Kalman filter
– Optimal feedback
– Stochastic formulation of systems with noise

• New challenges
– Adaptive feedback
– Neural networks can potentially have substantial impact 

on all of the above: need a lot of work
– Neural network for control of plasma turbulence: a 

remote promise!


