

Culham Sci Ctr

Active Resistive Wall Mode Stabilization in Low Rotation, High Beta NSTX Plasmas

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT **Nova Photonics** New York U **Old Dominion U ORNL PPPL PSI** Princeton U SNL Think Tank. Inc. **UC Davis UC** Irvine

UCLA

UCSD

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

S.A. Sabbagh¹, R.E. Bell², J.M. Bialek¹, J.E. Menard², D.A. Gates², A.C. Sontag¹, A.H. Boozer¹, A.H. Glasser³, B. LeBlanc², F. Levinton⁴, K. Shaing⁵, K. Tritz⁶, H. Yu⁴

¹Department of Applied Physics, Columbia University, New York, NY, USA

²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

³Los Alamos National Laboratory, Los Alamos, NM, USA

⁴Nova Photonics, Inc., Princeton, NJ, USA

⁵University of Wisconsin, Madison, WI, USA

⁶Johns Hopkins University, Baltimore, MD, USA

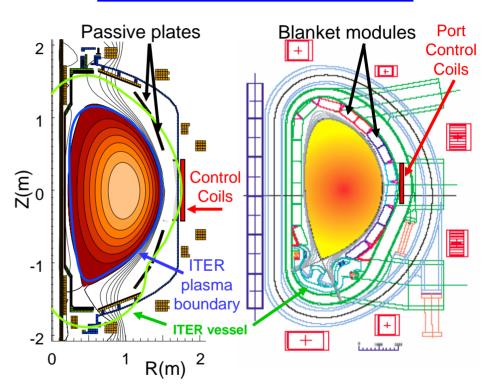
11th Workshop on Active Control of MHD Stability
Active MHD Control in ITER

November 7, 2006 PPPL - Princeton, NJ

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich IPP. Garching ASCR, Czech Rep

U Quebec

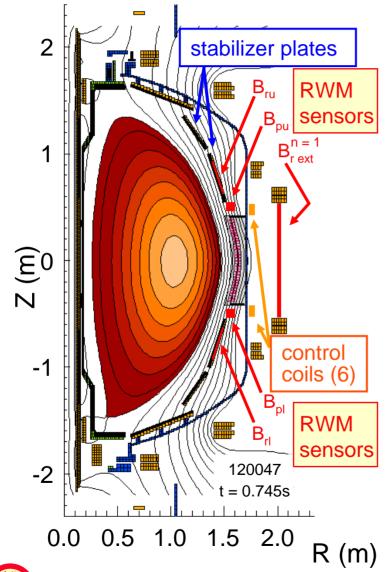
Physics understanding and control of pressure-amplified error fields, unstable RWMs reduce performance risks for ITER


RWM active stabilization

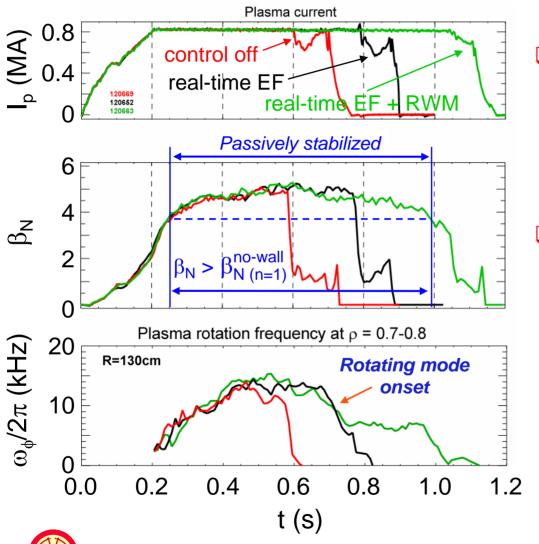
- RWM control demonstrated
- RWM actively stabilized in slowly rotating plasmas

Plasma rotation control

- Sustained rotation by realtime reduction of amplified error field
- Reduced rotation by nonresonant magnetic braking
- Quantitative understanding of momentum dissipation

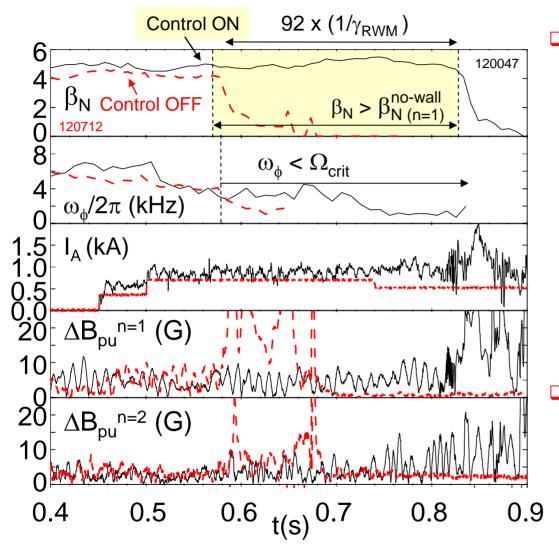

NSTX / ITER RWM control

Advantage: low aspect ratio, high β plasmas provide high leverage on theory to uncover key tokamak physics


RWM Active Feedback System Installed on NSTX

- Stabilizer plates for kink mode stabilization
 - Operation at $\beta_N/\beta_N^{no-wall} > 1.5$ for pulse >> τ_{wall} at highest $\beta_N > 6$
- External midplane control coils closely coupled to vacuum vessel
- □ Internal sensors can detect n = 1 - 3 RWM
 - Unstable n = 1 − 3 RWMs already observed in NSTX (Sabbagh, et al., NF 46 (2006) 635.)
 - n > 1 RWM studied during n = 1 active stabilization

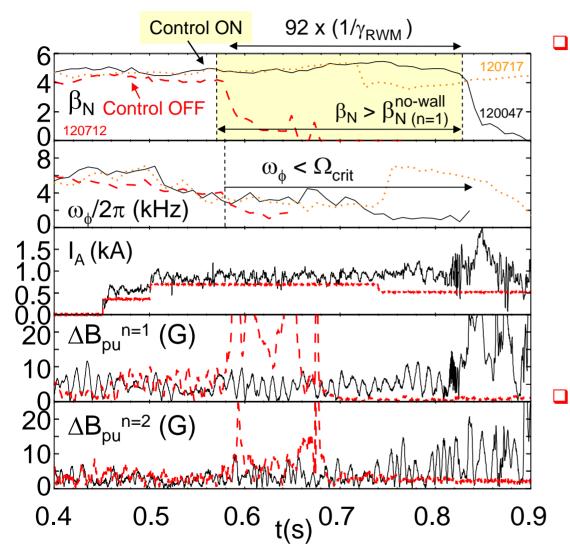
Dynamic error field correction increases pulse length in strongly rotating plasmas



- Real-time correction of known error field (EF)
 - yields higher rotation
 - yields longer pulse
- Combined real-time EF correction + n = 1 RWM feedback yielded best result
 - □ Toroidal rotation, ω_{ϕ} , increase or saturation at long pulse lengths first time for NSTX

J.E. Menard, et al., APS 2006

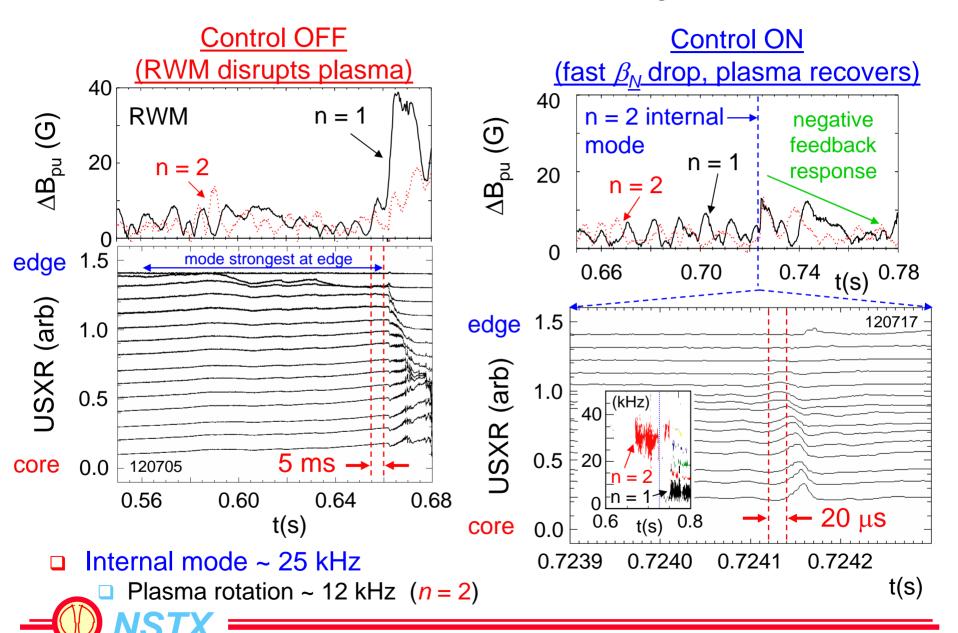
RWM actively stabilized at low, ITER-relevant rotation



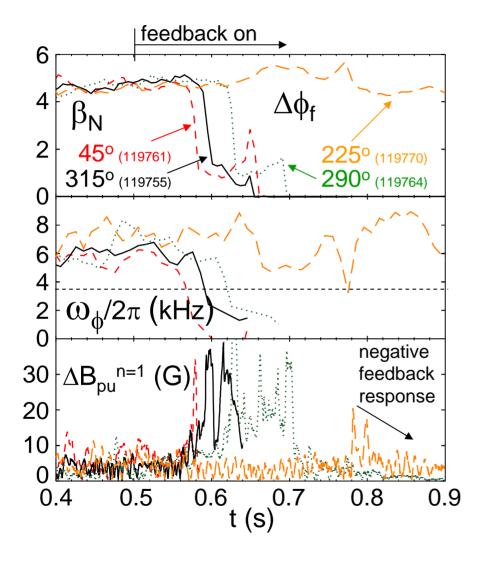
- First such demonstration in low A tokamak
 - Long duration > $90/\gamma_{RWM}$
 - Exceeds DCON $\beta_N^{no-wall}$ for n = 1 and n = 2
 - n = 2 RWM amplitude increases, mode remains stable while n = 1 stabilized
 - n = 2 internal plasma mode seen in some cases
- Plasma rotation ω_{ϕ} reduced by non-resonant n = 3magnetic braking
 - Non-resonant braking to accurately determine RWM critical rotation

(Sabbagh, et al., PRL **97** (2006) 045004.)

RWM actively stabilized at low, ITER-relevant rotation

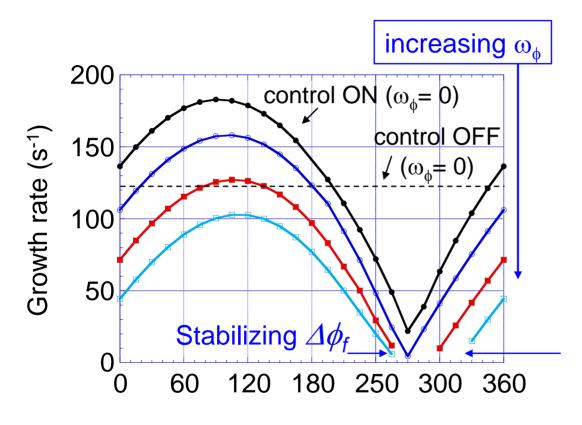


- First such demonstration in low A tokamak
 - Long duration > $90/\gamma_{RWM}$
 - Exceeds DCON $\beta_N^{no-wall}$ for n = 1 and n = 2
 - n = 2 RWM amplitude increases, mode remains stable while n = 1 stabilized
 - n = 2 internal plasma mode seen in some cases
- Plasma rotation ω_{ϕ} reduced by non-resonant n = 3magnetic braking
 - Non-resonant braking to accurately determine RWM critical rotation



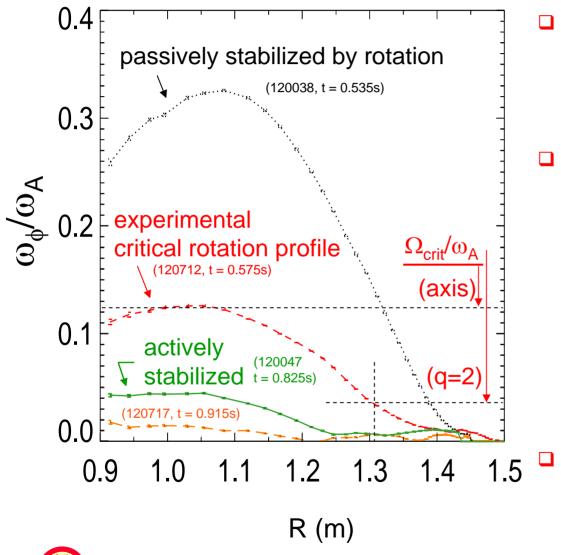
(Sabbagh, et al., PRL 97 (2006) 045004.)

n = 2 RWM does not become unstable during n = 1 stabilization


Varying relative phase shows positive/negative feedback

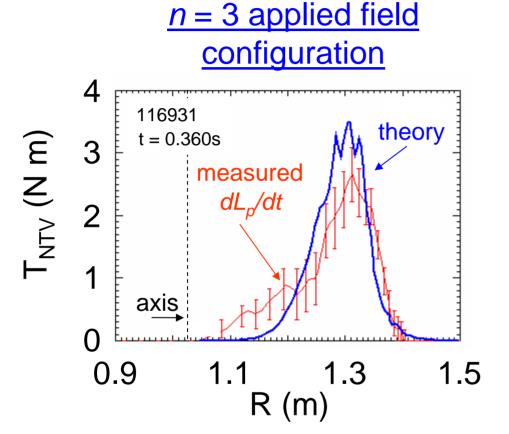
- □ Feedback on n = 1 RWM
 - □ Control current has relative phase $\Delta \phi_f$ to measured ΔB_p
- Phase scan shows superior settings for negative feedback
 - Pulse length increases
 - □ Internal plasma mode seen at $\Delta \phi_f$ = 225°, damped feedback system response
- Gain scan also performed
 - Sufficiently high gain showed feedback loop instability

VALEN-3D analysis demonstrates optimal relative phase $\Delta \phi_f$ for RWM active control



Relative phase (VALEN) (deg)

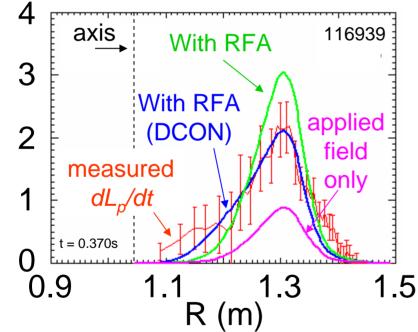
- □ First VALEN-3D analysis with both active and passive stabilization $(\omega_{\phi} > 0)$
- □ Unfavorable $\Delta \phi_f$ drives mode growth
- □ Stable range of $\Delta \phi_f$ increases with increasing ω_ϕ
- □ Optimal $\Delta \phi_f$ for active stabilization at $\omega_{\phi} = 0$ bracketed by results with $\omega_{\phi} > 0$.


Rotation reduced far below RWM critical rotation profile

- Rotation typically fast and sufficient for RWM passive stabilization
 - □ Reached $\omega_{\phi}/\omega_{A} = 0.48|_{axis}$
- Non-resonant n = 3 magnetic braking used to slow entire profile
 - The $\omega_{\phi}/\omega_{A} < 0.01|_{\alpha=2}$
 - The $\omega_{\phi}/\Omega_{crit} = 0.2|_{q=2}$
 - The $\omega_{\phi}/\Omega_{crit} = 0.3|_{axis}$
 - Less than ½ of ITER Advanced Scenario 4 $\omega_{\phi}/\Omega_{\rm crit}$ (Liu, et al., NF **45** (2005) 1131.)
 - Rotation profile responsible for passive stabilization, not just single radial location

Observed rotation decrease follows NTV theory

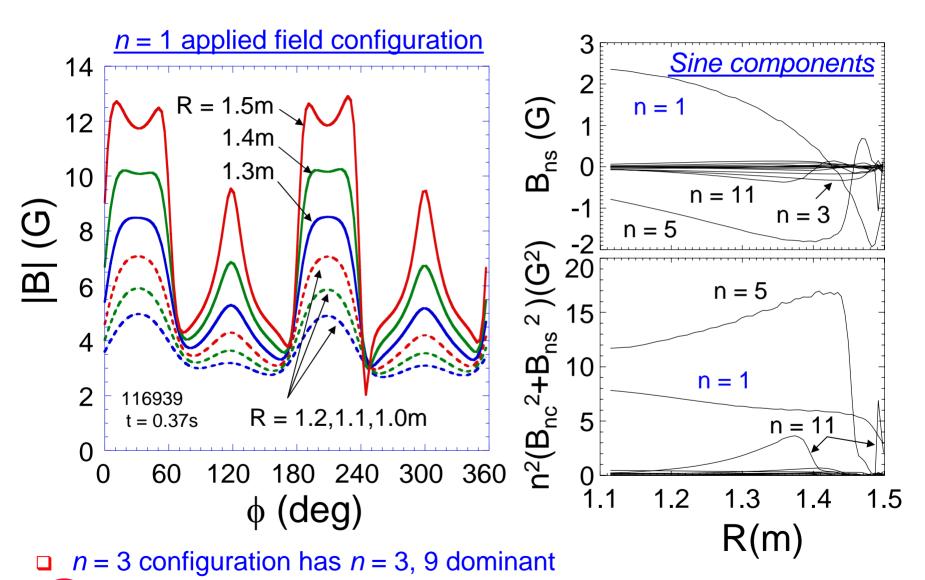
(Zhu, et al., PRL **96** (2006) 225002.)


- First quantitative agreement using full neoclassical toroidal viscosity theory (NTV)
 - Due to plasma flow through non-axisymmetric field
 - Computed using experimental equilibria
 - Trapped particle effects, 3-D field spectrum important
- Viable physics for simulations of plasma rotation in future devices (ITER, CTF)
 - Scales as $\delta B^2(p/v_i)(1/A)^{1.5}$
 - Low collisionality, ν_i , ITER plasmas expected to have higher rotation damping

Pressure-driven RFA increases NTV at high β_N

n = 1 applied fieldconfiguration

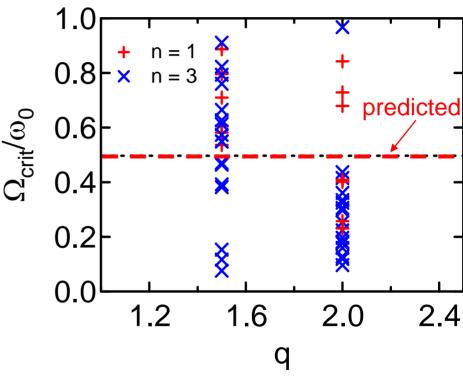
$$(\beta_N > \beta_N^{\text{no-wall}} = 4.4)$$


(Zhu, et al., PRL **96** (2006) 225002.)

- Resonant field amplification (RFA) increases applied field when $\beta_N > \beta_N^{no-wall}$
 - \square n = 1 has strongest RFA
- Measured RFA, or unstable RWM field yields increase in NTV rotation damping
 - Torque due to applied field alone does not match experiment as well
- Computation based on applied field, or DCON computed mode spectrum
 - DCON eigenfunction yields slightly broader profile, better experimental agreement

 $(M M)^{VTN}$

Accurate NTV calculation requires broad applied |B| spectrum



<u> Ω_{crit} not correlated with Electromagnetic Torque Model</u>

- Rapid drop in ω_{ϕ} when RWM unstable may seem similar to 'forbidden bands' model
 - theory: drag from electromagnetic torque on tearing mode*
 - Rotation bifurcation at $\omega_0/2$ predicted
- No bifurcation at $\omega_0/2$ observed
 - no correlation at q = 2 or further into core at q = 1.5
 - Same result for n = 1 and 3 applied field configuration

 $(\omega_0 = \text{steady-state plasma rotation})$

A.C. Sontag, et al., IAEA 2006

*R. Fitzpatrick, Nucl. Fusion **33** (1993) 1061.

Rotation profile shape important for RWM stability

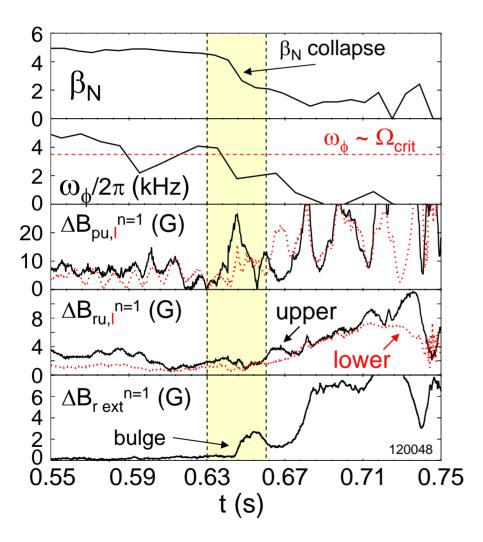
0.25

0.20

- Benchmark profile for stabilization is $\omega_c = \omega_A / 4q^2 *$
 - predicted by Bondeson-Chu semikinetic theory**
- n = 3 braking field <u>reduces</u> Ω_{crit} profile
- High rotation outside q = 2.5 not required for stability
 - Zero rotation at single q can be stable
- Scalar Ω_{crit}/ω_A at q=2, > 2 not a reliable criterion for stability
 - consistent with distributed dissipation mechanism

[∀] 0.15 O.10 t_{crit} - 10 ms $1/(4q^2)$ 0.05 0.001.5 2.0 2.5 3.0 3.5 4.0 0.4 no applied field $\Omega_{\rm crit}/\omega_{\rm A}$ n = 3DCn = 1 DCn = 1 traveling n = 1 & n = 30.1 0.0 1.0 2.0 3.0 4.0

*A.C. Sontag, et al., Phys. Plasmas 12 (2005) 056112. **A. Bondeson, M.S. Chu, Phys. Plasmas 3 (1996) 3013.



no applied field

n = 3 max. braking

n = 3

RWM may change form and grow during active control

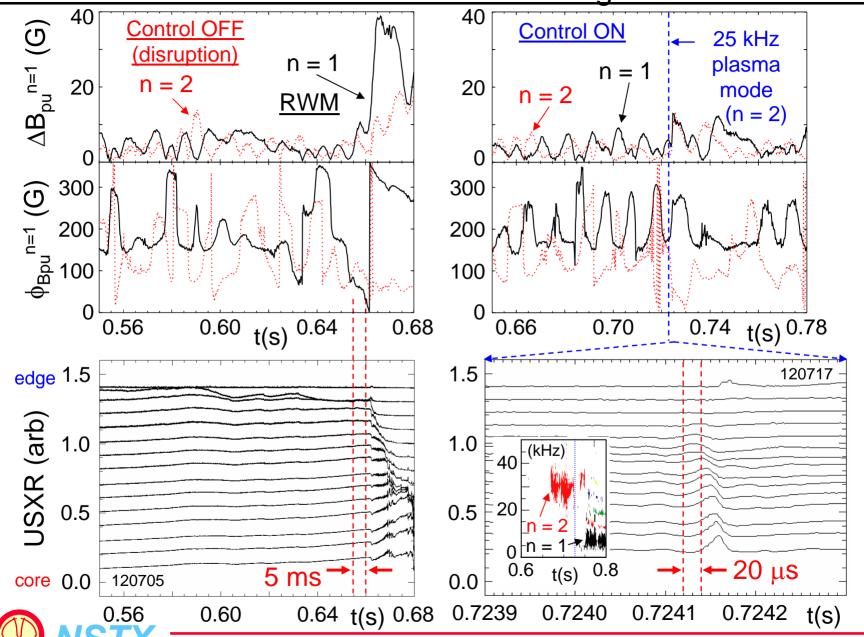
- Poloidal n = 1 RWM field decreases to near zero
 - Radial field increasing
- Subsequent growth of poloidal RWM field
 - Asymmetric above/below midplane
- Radial sensors show RWM bulging at midplane
 - midplane signal increases, upper/lower signals decrease
 - Theory: may be due to other stable ideal n = 1 modes becoming less stable

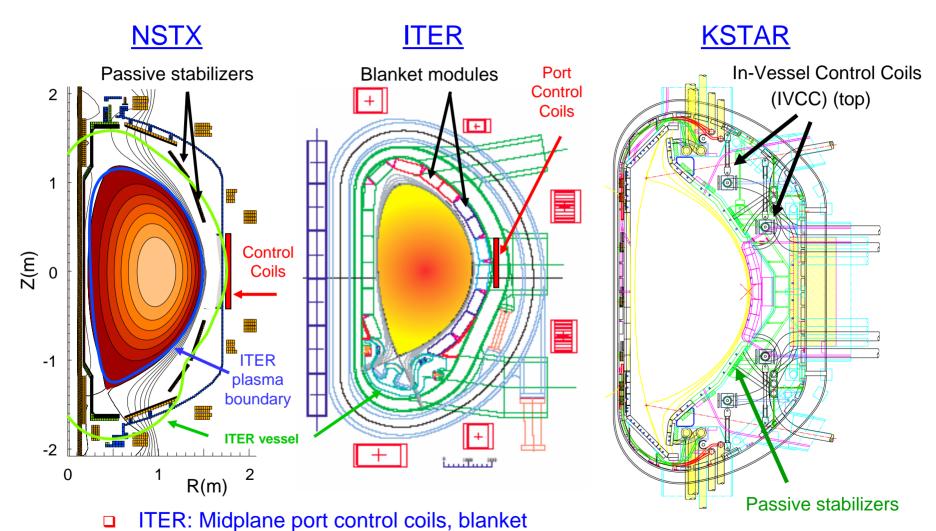
Future research will assess using combined sensors for optimization

NSTX begins RWM active stabilization research relevant to ITER, CTF and beyond

- \square First demonstration of RWM active stabilization in high β , low A tokamak plasmas with $\omega_{\scriptscriptstyle \phi}$ significantly less than $\Omega_{\scriptscriptstyle crit}$
 - In the predicted range of ITER
 - Positive and negative RWM feedback demonstrated by varying feedback gain and relative phase
- □ Stability of n = 2 RWM observed during n = 1 RWM stabilization
 - \square n = 1,2 plasma mode sometimes observed; fast β collapse, recovery
- Plasma rotation reduction by non-resonant applied field; follows neoclassical toroidal viscosity theory
 - Full NTV calculation yielding quantitative agreement to experiment; general momentum transport relevance
- Results continue to support Ω_{crit} as profile; scalar insufficient

Active RWM control remains vitally important to minimize performance risk in ITER


- lacktriangledown Agreement does not yet exist regarding $\Omega_{\rm crit}$, RWM stabilization physics in low-rotation plasmas
- Observed inverse dependence of Ω_{crit} on ν_i indicates lower ITER collisionality may require a higher degree of RWM active stabilization (see talk by A. Sontag, this meeting)
- Similar inverse dependence of plasma momentum dissipation on v_i in NTV theory indicates ITER plasmas will be subject to higher viscosity, greater ω_{ϕ} reduction
- □ Strong δB^2 dependence of quantitatively verified NTV theory shows that error fields, resonant field amplification, ELMs need be minimized to maximize stabilizing ω_{ϕ}
- Pressure, q, and ω_{ϕ} profiles unknown for burning plasma. RWM (and ELM, error field) control reduces performance risk


Extra slides

n = 2 RWM does not become unstable during n = 1 stabilization

NSTX global MHD mode stabilization hardware similar to designs for next-step tokamaks

KSTAR: Midplane control coil, passive plate geometry with midplane gap