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Motivation
• Resistive Wall Mode (RWM) in tokamaks 

Need for stabilization
• Past research on the suppression of RWM 

Deterministic models used
No optimal control used
Fixed gain controllers without adaptive structure
PID control inadequate for multi unstable modes

• Sen, Nagashima and Longman’s work 
Stochastic model used, optimal state feedback

• New methods as in the outline
State feedback control, output feedback control and its neural 
netowrk (NN) implementation



Part I

Online System Identification
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Objectives

• A mathematical model should be estimated from 
experimental data 

Should be able to estimate time-varying systems 
Convergence time should be shorter compared to the 
inverse of the growth rate
Computational burden should be small
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System models of a single unstable RWM

• State-space system model of a single 
unstable RWM
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• Difference equation model

Sampling rate is 1ms,  e(k) is system noise 
q is the forward shift operator 

• Noise modeling 
Total noise, approximately ½ to 1 Gauss, is evenly 
divided between the measurement noise and the 
plant noise 
RMS value of the plant noise is about 10-4 Weber
RMS value of the measurement noise about 10-4

Weber

( ) ( ) ( ) ( ) ( ) ( )A q k B q u k C q e kψ = +
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• Autoregressive system model
( ) ( 1)Tk kψ ϕ θ= −

• Extended least square (ELS) method 

is defined as the estimate of θθ̂

• Regression model setup
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Identification of the time-invariant model
Estimation of A(q) Estimation of B(q)
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ELS method for the time-varying system
• Real plasma systems are time-varying

Use a forgetting factor λ, 0 < λ ≤ 1, The ELS method becomes 

Relationship between λ and the evolution of the system 

• Simulation of a time-varying system model
The simulation starts with the original model
The system matrix A takes step increase of 10% every 50ms: 
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Identification of the time-varying system
Estimation of A(q) Estimation of B(q)
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Part II

Adaptive Output Feedback Control
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Objectives 
• Minimize the output (fluctuation) energy 

and control energy

• Stabilization time is short

• Control design should be simple and fast

• Computation burden should be low
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Block diagram of the controlled plasma
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• Quadratic cost function 

• Control law 

• R and S satisfy the Diophantine equation 

• P is the solution to a spectral factorization 
problem 

( ){ }2 2( )J E k uψ ρ= +

( ) ( ) ( ) ( )R q u q S q qψ= −

)()()()()()( qCqPqSqBqRqA =+

)()()()()()( 111 −−− += qBqBqAqAqPqrP ρ
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Control Signal (Volt)Magnetic Flux (Weber)

Output feedback control of the time-
invariant system 

Stabilization 
point

Stabilization point

Steady-state value: 
4*10-4Weber
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Magnetic Flux (Weber) Control Signal (Volt)

Adaptive output feedback control of the 
time-varying system 

Step changes Step changes

Steady-state value: 
1.8*10-3Weber



Part III

Neural Network Control
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Objectives

• Develop a control algorithm for a Neural 
Network (NN)

• Implement the adaptive output feedback 
control with the algorithm 

• Use a digital neural network hardware 
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• Mathematical model for the neuron.
are inputs. They are multiplied by 

connection weights                        and summed. 
The sum  is passed to a transfer function and  the result 
is the output of the neuron. 

• A neural network (NN) is a system composed of 
many neurons 

Its function is determined by network structure, 
connection strengths, and transfer functions
The transfer function is chosen to be a linear function in 
the study

• A Neural Network processor (NNP) made by 
Accurate Automation Corporation (AAC) has 
been debugged and software improved.

muuu ,, 21

mwww ,, 21
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Block Diagram of the NNP control
Diophantine eq.

Output feedback 
control design

Input

Output
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A generalized linear Hopfield network
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• The generalized linear Hopfield network can solve 
simultaneous linear equations, e.g., the 
Diophantine Eq. 

The Diophantine Eq. should be rewritten as 
Stage 1: a feedforward layer with b as its inputs and AT
as its weight matrix
Stage 2: a Linear Hopfield layer whose inputs are the 
outputs of the Stage 1 layer, and weight matrix is ,            

where 

The outputs of the second layer give the negative of the 
conjugate of the solution being sought.

bAx =

)( TAAIW α−=
)(

10
AAtrace T<< α
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Interface of the NN controller
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Stabilization of the time-invariant system

Steady-state value: 
4.5*10-4Weber
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Stabilization of the time-varying system

Steady-state value: 
1.9*10-3Weber
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Computation time

• Matrix inversion is used as an example.
• Sequential algorithms 

Lower-upper decomposition algorithm is used to do the 
inversion
Complexity of this algorithm is O(N3)(C++ notation).

• Parallel (NN) algorithm 
LHN is the neural network used to invert the matrix. 
Complexity of this algorithm is either O(N1) or 
O(1)(C++ notation).
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Summary
• The ELS method can give an accurate estimate of the 

single mode RWM 
• Stochastic optimal output feedback control can stabilize 

the single mode RWM, it is able to stabilize the RWM 
with a convergence time of three times the inverse of the 
growth rate. 

• Neural Network Processor can be used to implement the 
adaptive stochastic optimal output feedback control of a 
RWM. 

• Computation time of the neural network control is similar 
to the output feedback control. However, it will be much 
faster for high-order systems.


