Rotational Stabilization of the Resistive Wall Mode in DIII-D

By
H. Reimerdes

With
A.M. Garofalo, G.L. Jackson, R.J. La Haye, M. Okabayashi, E.J. Strait, M.S. Chu, R.J. Groebner, M.J. Lanctot, Y.Q. Liu, G.A. Navratil, and W.M. Solomon

1Columbia University, New York, New York
2General Atomics, San Diego, California
3Princeton Plasma Physics Lab., Princeton, New Jersey
4Chalmers University of Technology, Göteborg, Sweden

Presented at the
11th Workshop on MHD Stability Control: "Active MHD Control in ITER"
Princeton Plasma Physics Laboratory
November 6-8, 2006
• Measurement of rotation threshold for RWM stabilization with low NBI torque and good n=1 error field correction rotation
 – Rotation threshold significantly lower than thresholds obtained with n=1 magnetic braking

• Active MHD spectroscopy in low rotation plasmas
 – Evidence of weakly damped RWM with zero mode rotation frequency

• Comparison of low rotation threshold with theory
 – (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements

• Revisiting previous predictions of kinetic damping model
 – Weighted sum of the rotation at all resonant surfaces yields a better stability criterion
Measurement of rotation threshold for RWM stabilization with low NBI torque and good \(n=1 \) error field correction rotation
- Rotation threshold significantly lower than thresholds obtained with \(n=1 \) magnetic braking

Active MHD spectroscopy in low rotation plasmas
- Evidence of weakly damped RWM with zero mode rotation frequency

Comparison of low rotation threshold with theory
- (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements

Revisiting previous predictions of kinetic damping model
- Weighted sum of the rotation at all resonant surfaces yields a better stability criterion
Discharges are designed to have a low ideal MHD no-wall stability limit.

- Ideal MHD stability limits for DCON and MARS-F agree within 10%
 - $\beta_{N,\text{no-wall}} (n=1) \sim 2.0 \sim 2.5 \ell_i$
 - Supported by magnetic braking experiments
 - $\beta_{N,\text{ideal-wall}} (n=1) \sim 3.1$

H. Reimerdes, MHD workshop, PPPL, November 6, 2006.
Reducing NBI torque and $n=1$ magnetic braking yield very different rotation thresholds

- **NBI torque reduction and correction of $n=1$ error field** yield RWM onset at low rotation

- **Magnetic braking by removing correction of $n=1$ error field** yields RWM onset at high rotation

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Reducing NBI torque and n=1 magnetic braking yield very different rotation thresholds

- With reduced NBI torque the RWM rotation threshold (for $\rho < 0.85$) is significantly lower than with magnetic braking
 - Resonant braking can lead to overestimation of linear RWM threshold

→ A.M. Garofalo, Tuesday 11:45AM

- Charge exchange recombination (CER) diagnostic measures carbon impurity rotation
 - Correction for deuterium expected to be important

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Rotation threshold with reduced NBI torque and corrected error field has only a weak β-dependence

- **RWM onset occurs when rotation at $\rho=0.6$ ($q \sim 2$) reduced to $\Omega_{\text{rot}} \tau_A(\rho=0.6)=0.2-0.3\%$**
Outline

• Measurement of rotation threshold for RWM stabilization with low NBI torque and good n=1 error field correction rotation
 – Rotation threshold significantly lower than thresholds obtained with n=1 magnetic braking

• Active MHD spectroscopy in low rotation plasmas
 – Evidence of weakly damped RWM with zero mode rotation frequency

• Comparison of low rotation threshold with theory
 – (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements

• Revisiting previous predictions of kinetic damping model
 – Weighted sum of the rotation at all resonant surfaces yields a better stability criterion
Measure frequency response to externally applied $n=1$ magnetic fields

- **Identical discharges**
 - $\beta_N = 2.3 \sim 2.9 \zeta_i$
 - moderate rotation

- **Apply rotating**
 - $(3/1)$ magnetic field with I-coil
 - $I_{\text{I-coil}} = 100 - 180A$
 - $f_{\text{I-coil}} = -20 - +50Hz$

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Measure frequency response to externally applied $n=1$ magnetic fields

- **Frequency response described by single mode:**
 \[\tau_W \frac{dB_s}{dt} - \gamma_0 \tau_W B_s = M_{sc}^* \cdot I_c \]

- **Frequency response fit yields:**
 - $M_{sc} = (2.73 + i0.15) \text{ G/kA (coupling coeff.)}$
 - $\gamma_0 = (-141 + i108) \text{ s}^{-1}$ (growth rate)

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Active RWM spectroscopy measures evolution of RWM stability

Active MHD spectroscopy: \(f(\text{coil})=25 \text{Hz}, \; I(\text{coil})=180 \text{A} \)

- \(\beta_N \)
- \(\Omega_{\text{rot}} (q-2) \) (krad/s)
- RWM growth rate (s^{-1})
- RWM rotation frequency (Hz)

Time (ms):

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Active RWM spectroscopy measures evolution of RWM stability

1. Beta exceeds $\beta_{\text{no-wall}}$
 - Damping decreases
 - RWM stable with near zero mode frequency

Active MHD spectroscopy: $f(l\text{-coil})=25\text{Hz}$, $I(l\text{-coil})=180\text{A}$

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Active RWM spectroscopy measures evolution of RWM stability

1. **Beta exceeds** $\beta_{\text{no-wall}}$
 - Damping decreases
 - RWM stable with near zero mode frequency

2. **Rotation increases**
 - Mode rotation increases, too

Active MHD spectroscopy: $f(\text{l-coil})=25\,\text{Hz}$, $I(\text{l-coil})=180\,\text{A}$

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Active RWM spectroscopy measures evolution of RWM stability

1. Beta exceeds $\beta_{\text{no-wall}}$
 - Damping decreases
 - RWM stable with near zero mode frequency

2. Rotation increases
 - Mode rotation increases, too

3. Rotation decreases at constant beta
 - Mode rotation decreases
 - Damping decreases

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Active RWM spectroscopy measures evolution of RWM stability

1. Beta exceeds $\beta_{\text{no-wall}}$
 - Damping decreases
 - RWM stable with near zero mode frequency

2. Rotation increases
 - Mode rotation increases, too

3. Rotation decreases at constant beta
 - Mode rotation decreases
 - Damping decreases

4. Onset of rotating mode
Active RWM spectroscopy measures evolution of RWM stability

1. Beta exceeds $\beta_{\text{no-wall}}$
 - Damping decreases
 - RWM stable with near zero mode frequency

2. Rotation increases
 - Mode rotation increases, too

3. Rotation decreases at constant beta
 - Mode rotation decreases
 - Damping decreases

4. Onset of rotating mode

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
RWM stabilized despite near zero mode frequency

- Measured growth (damping) rate and mode rotation frequency:

<table>
<thead>
<tr>
<th>t (ms)</th>
<th>γ_{RWM} (s(^{-1}))</th>
<th>ω_{RWM} (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>-140</td>
<td>2±5</td>
</tr>
</tbody>
</table>
RWM stabilized despite near zero mode frequency

- Measured growth (damping) rate and mode rotation frequency:

<table>
<thead>
<tr>
<th>t (ms)</th>
<th>γ_{RWM} (s$^{-1}$)</th>
<th>ω_{RWM} (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>-140</td>
<td>2±5</td>
</tr>
</tbody>
</table>

- Near zero mode rotation indicates strong interaction near plasma edge (i.e. $q=4$ surface)
RWM stabilized despite near zero mode frequency

- Measured growth (damping) rate and mode rotation frequency:

<table>
<thead>
<tr>
<th>t (ms)</th>
<th>γ_{RWM} (s^{-1})</th>
<th>ω_{RWM} (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>-140</td>
<td>2 ± 5</td>
</tr>
<tr>
<td>1900</td>
<td>-140</td>
<td>25 ± 5</td>
</tr>
</tbody>
</table>

- Near zero mode rotation indicates strong interaction near plasma edge (i.e. $q=4$ surface)
Outline

• Measurement of rotation threshold for RWM stabilization with low NBI torque and good $n=1$ error field correction rotation
 – Rotation threshold significantly lower than thresholds obtained with $n=1$ magnetic braking

• Active MHD spectroscopy in low rotation plasmas
 – Evidence of weakly damped RWM with zero mode rotation frequency

• Comparison of low rotation threshold with theory
 – (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements

• Revisiting previous predictions of kinetic damping model
 – Weighted sum of the rotation at all resonant surfaces yields a better stability criterion
Can theory explain the new low RWM stabilization rotation threshold?

- “Low li” plasmas ($\ell_i \sim 0.67$) [La Haye et al, Nucl. Fusion 2004]
 - Kinetic damping underestimates ω_{crit} by $\sim 30\%$
Can theory explain the new low RWM stabilization rotation threshold?

- **“Low li” plasmas** ($\ell_i \sim 0.67$)

 [La Haye et al, Nucl. Fusion 2004]

 - Kinetic damping underestimates Ω_{crit} by $\sim 30\%$

- **“Moderate li” plasmas** ($\ell_i \sim 0.83$)

 [Reimerdes et al, Nucl. Fusion 2005]

 - Kinetic damping underestimates Ω_{crit} by $\sim 70\%$
Can theory explain the new low RWM stabilization rotation threshold?

- **“Low li” plasmas (\(\ell_i \sim 0.67\))**

 [La Haye et al, Nucl. Fusion 2004]

 - Kinetic damping underestimates \(\Omega_{\text{crit}}\) by \(\sim 30\%\)

- **“Moderate li” plasmas (\(\ell_i \sim 0.83\))**

 [Reimerdes et al, Nucl. Fusion 2005]

 - Kinetic damping underestimates \(\Omega_{\text{crit}}\) by \(\sim 70\%\)

- **“JET shape” plasmas**

 [Reimerdes et al, Phys. Plasmas 2006]

 - Kinetic damping underestimates \(\Omega_{\text{crit}}\) by \(\sim 20\%\)
Can theory explain the new low RWM stabilization rotation threshold?

- **“Low li” plasmas (l_i ~ 0.67)**
 [La Haye et al, Nucl. Fusion 2004]
 - Kinetic damping underestimates \(\omega_{\text{crit}} \) by ~30%

- **“Moderate li” plasmas (l_i ~ 0.83)**
 [Reimerdes et al, Nucl. Fusion 2005]
 - Kinetic damping underestimates \(\omega_{\text{crit}} \) by ~70%

- **“JET shape” plasmas**
 [Reimerdes et al, Phys. Plasmas 2006]
 - Kinetic damping underestimates \(\omega_{\text{crit}} \) by ~20%

- Kinetic damping underestimated the rotation threshold in previous magnetic braking experiments to various degrees
Can theory explain the new low RWM stabilization rotation threshold?

- **“Low li” plasmas** ($\ell_i \sim 0.67$)

 [La Haye et al, Nucl. Fusion 2004]

 - Kinetic damping underestimates Ω_{crit} by $\sim 30\%$

- **“Moderate li” plasmas** ($\ell_i \sim 0.83$)

 [Reimerdes et al, Nucl. Fusion 2005]

 - Kinetic damping underestimates Ω_{crit} by $\sim 70\%$

- **“JET shape” plasmas**

 [Reimerdes et al, Phys. Plasmas 2006]

 - Kinetic damping underestimates Ω_{crit} by $\sim 20\%$

- Kinetic damping underestimated the rotation threshold in previous magnetic braking experiments to various degrees
Kinetic damping model consistent with low rotation threshold

- **Marginal stability predicted with ~65% of the experimental rotation**
 - Corresponds to $\Omega_{\text{crit}}\tau_A = 0.2\%$ - similar to experimental results

- **Negative mode rotation**
 - Suggests strong interaction near plasma edge (e.g. $q=4$)

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Kinetic damping model consistent with low rotation threshold

- Marginal stability predicted with ~65% of the experimental rotation
 - Corresponds to $\Omega_{\text{crit}} \tau_A = 0.2\%$ - similar to experimental results

- Negative mode rotation suggests strong interaction near plasma edge (e.g. $q=4$)
Kinetic damping model in surprisingly good agreement with observed β-dependence of RWM rotation threshold

- Kinetic damping predictions forms lower bound of observed rotation threshold

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Kinetic damping model in surprisingly good agreement with observed β-dependence of RWM rotation threshold

• Kinetic damping predictions form lower bound of observed rotation threshold

• Multiple reasons why experiment and theory should not agree
 – Difference between measured carbon impurity and deuterium main ion rotation can be significant
 – Model does not include poloidal rotation
 – NBI torque reduction is not described by simple scaling of rotation profile

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Outline

• Measurement of rotation threshold for RWM stabilization with low NBI torque and good \(n=1 \) error field correction rotation
 – Rotation threshold significantly lower than thresholds obtained with \(n=1 \) magnetic braking

• Active MHD spectroscopy in low rotation plasmas
 – Evidence of weakly damped RWM with zero mode rotation frequency

• Comparison of low rotation threshold with theory
 – (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements

• Revisiting previous predictions of kinetic damping model
 – Weighted sum of the rotation at all resonant surfaces yields a better stability criterion
Large range of MARS-F predictions for $\Omega_{\text{crit}} \tau_A$ at $q=2$ can be caused by vastly different rotation profiles

- **"Low li" plasmas ($\ell_i \sim 0.67$)
 - "High" critical rotation at $q=2$
 - Only 2 resonant surfaces with significant rotation
Large range of MARS-F predictions for $\Omega_{\text{crit}} \tau_A$ at $q=2$ can be caused by vastly different rotation profiles

- **“Low li” plasmas ($l_i \sim 0.67$)**
 - “High” critical rotation at $q=2$
 - Only 2 resonant surfaces with significant rotation

- **“Moderate li” plasmas ($l_i \sim 0.83$)**
 - “Low” critical rotation at $q=2$
 - 3 resonant surfaces with rotation

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Large range of MARS-F predictions for $\Omega_{\text{crit}}\tau_A$ at $q=2$ can be caused by vastly different rotation profiles

- **“Low li” plasmas ($\ell_i \sim 0.67$)**
 - “High” critical rotation at $q=2$
 - Only 2 resonant surfaces with significant rotation

- **“Moderate li” plasmas ($\ell_i \sim 0.83$)**
 - “Low” critical rotation at $q=2$
 - 3 resonant surfaces with rotation

- **“JET shape” plasmas**
 - “Moderate” critical rotation at $q=2$
 - 3 resonant surfaces with rotation

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Large range of MARS-F predictions for Ω_{crit} at $q=2$ can be caused by vastly different rotation profiles

- **“Low li” plasmas ($\ell_i \sim 0.67$)**
 - “High” critical rotation at $q=2$
 - Only 2 resonant surfaces with significant rotation

- **“Moderate li” plasmas ($\ell_i \sim 0.83$)**
 - “Low” critical rotation at $q=2$
 - 3 resonant surfaces with rotation

- **“JET shape” plasmas**
 - “Moderate” critical rotation at $q=2$
 - 3 resonant surfaces with rotation

- **“Low NBI torque” plasmas**
 - “Lowest” critical rotation
 - 4 resonant surfaces with rotation
Large range of MARS-F predictions for $\Omega_{\text{crit}} \tau_A$ at $q=2$ can be caused by vastly different rotation profiles

- **“Low li” plasmas ($\ell_i \sim 0.67$)**
 - “High” critical rotation at $q=2$
 - Only 2 resonant surfaces with significant rotation

- **“Moderate li” plasmas ($\ell_i \sim 0.83$)**
 - “Low” critical rotation at $q=2$
 - 3 resonant surfaces with rotation

- **“JET shape” plasmas**
 - “Moderate” critical rotation at $q=2$
 - 3 resonant surfaces with rotation

- **“Low NBI torque” plasmas**
 - “Lowest” critical rotation
 - 4 resonant surfaces with rotation

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Weighted sum over rotation at all resonant surfaces may yield a better criterion for marginal stability

| $\Omega_{\text{crit}} \tau_A$ | $q=2$ | $q=3$ | $q=4$ | $q=5$ | $\sum (|\Omega_{\text{crit}} \tau_A|)_k$ | $\sum (|\Omega_{\text{crit}} \tau_A|)_k q_k$ | $\sum (|\Omega_{\text{crit}} \tau_A|)_k q_k^2$ |
|-----------------------------|---------|---------|---------|---------|---|---|---|
| **Fast I_p ramp** | 0.0120 | 0.0035 | 0.0004 | - | 0.0159 | 0.0361 | 0.0859 |
| **Slow I_p ramp** | 0.0030 | 0.0018 | 0.0015 | 0.0002 | 0.0065 | 0.0184 | 0.0572 |
| **JETshape** | 0.0060 | 0.0007 | 0.0007 | 0.0001 | 0.0075 | 0.0174 | 0.0440 |
| **Reduced T_{NBI}** | 0.0020 | 0.0010 | 0.0031 | 0.0011 | 0.0072 | 0.0249 | 0.0941 |
| **Mean** | 0.0058 | 0.0018 | 0.0014 | 0.0005 | 0.0093 | 0.0242 | 0.0703 |
| **σ/mean** | 78% | 72% | 86% | 120% | 47% | 36% | 32% |

- **Kinetic damping predictions of $\Omega_{\text{crit}} \tau_A$** at $q=2$ varies by a factor of 6
- **Weighted sums over all rational surfaces reduce the deviations in the criterion for marginal stability**
 - Kinetic damping [Bondeson and Chu, PHP 1996] suggests $\Omega_{\text{crit}} \tau_A \propto q^{-2}$
 - Displacement profile expected to play a significant role, too

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
Low rotation threshold for RWM stabilization obtained with low NBI torque and good n=1 error field correction

- Critical rotation at the $q=2$ surface found as low as $\Omega_{crit} = 0.2-0.3\%$
 - Rotation threshold evaluated at $q=2$ is 2 to 10 times lower than suggested by previous experiments using $n=1$ “magnetic braking”
- Active MHD spectroscopy yields damped RWM with zero mode rotation frequency in plasmas with low NBI torque
 - Strong interaction with rotation near plasma edge, i.e. at $q>2$
- “Kinetic damping” model (calculated with MARS-F code) found consistent with the observed low rotation threshold
 - Rotation at higher q-surfaces ($q>2$) predicted to be important
 - Previous kinetic damping predictions of higher critical values at $q=2$ caused by different rotation profile shapes
 - Weighted sum of rotation at resonant surfaces (or volume integral) may lead to a better criterion for marginal stability
- Overestimation of rotation threshold with resonant magnetic braking and different rotation profile shapes with balanced beams, both, may reconcile new results with previous magnetic braking experiments