Rotational Stabilization of the Resistive Wall Mode in DIII-D

By H. Reimerdes¹

With

A.M. Garofalo,¹ G.L. Jackson,² R.J. La Haye,² M. Okabayashi,³ E.J. Strait,² M.S. Chu,² R.J. Groebner,² M.J. Lanctot,¹ Y.Q. Liu,⁴ G.A. Navratil,¹ and W.M. Solomon³

¹Columbia University, New York, New York
²General Atomics, San Diego, California
³Princeton Plasma Physics Lab., Princeton, New Jersey
⁴Chalmers University of Technology, Göteborg, Sweden

Presented at the 11th Workshop on MHD Stability Control: "Active MHD Control in ITER" Princeton Plasma Physics Laboratory November 6-8, 2006

Outline

- Measurement of rotation threshold for RWM stabilization with low NBI torque and good n=1 error field correction rotation
 - Rotation threshold significantly lower than thresholds obtained with n=1 magnetic braking
- Active MHD spectroscopy in low rotation plasmas
 - Evidence of weakly damped RWM with zero mode rotation frequency
- Comparison of low rotation threshold with theory
 - (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements
- Revisiting previous predictions of kinetic damping model
 - Weighted sum of the rotation at all resonant surfaces yields a better stability criterion

Outline

- Measurement of rotation threshold for RWM stabilization with low NBI torque and good n=1 error field correction rotation
 - Rotation threshold significantly lower than thresholds obtained with n=1 magnetic braking
- Active MHD spectroscopy in low rotation plasmas
 - Evidence of weakly damped RWM with zero mode rotation frequency
- Comparison of low rotation threshold with theory
 - (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements
- Revisiting previous predictions of kinetic damping model
 - Weighted sum of the rotation at all resonant surfaces yields a better stability criterion

Discharges are designed to have a low ideal MHD no-wall stability limit

- Ideal MHD stability limits for DCON and MARS-F agree within 10%
 - $\beta_{N,no-wall}$ (n=1) ~ 2.0 ~ 2.5 ℓ_{i}
 - + Supported by magnetic braking experiments
 - $\beta_{N,ideal-wall}$ (n=1) ~ 3.1

Reducing NBI torque and *n*=1 magnetic braking yield very different rotation thresholds

 NBI torque reduction and correction of n=1 error field yield RWM onset at low rotation

 Magnetic braking by removing correction of n=1 error field yields RWM onset at high rotation

Reducing NBI torque and *n*=1 magnetic braking yield very different rotation thresholds

- With reduced NBI torque the RWM rotation threshold (for ρ<0.85) is significantly lower than with magnetic braking
 - Resonant braking can lead to overestimation of linear RWM threshold

→ A.M. Garofalo, Tuesday 11:45AM

- Charge exchange recombination (CER) diagnostic measures carbon impurity rotation
 - Correction for deuterium expected to be important

Rotation threshold with reduced NBI torque and corrected error field has only a weak β-dependence

• RWM onset occurs when rotation at $\rho=0.6$ ($q\sim2$) reduced to $\Omega_{rot}\tau_A=0.2-0.3\%$

Outline

- Measurement of rotation threshold for RWM stabilization with low NBI torque and good n=1 error field correction rotation
 - Rotation threshold significantly lower than thresholds obtained with n=1 magnetic braking
- Active MHD spectroscopy in low rotation plasmas
 - Evidence of weakly damped RWM with zero mode rotation frequency
- Comparison of low rotation threshold with theory
 - (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements
- Revisiting previous predictions of kinetic damping model
 - Weighted sum of the rotation at all resonant surfaces yields a better stability criterion

Measure frequency response to externally applied *n*=1 magnetic fields

- Identical discharges
 - $\beta_N = 2.3 \sim 2.9 \ell_i$
 - moderate rotation
- Apply rotating m~3/n=1 magnetic field with I-coil
 - $I_{\text{I-coil}} = 100 180 \text{A}$

$$- f_{\text{I-coil}} = -20 - +50$$
Hz

Measure frequency response to externally applied *n*=1 magnetic fields

Frequency response described by single mode:

$$\tau_W \frac{dB_s}{dt} - \gamma_0 \tau_W B_s = M_{sc}^* \cdot I_c$$

Frequency response fit yields: $-M_{sc} = (2.73 + i0.15) \text{ G/kA}$ (coupling coeff.) $-\gamma_0 = (-141 + i108) s^{-1}$ (growth rate)

- **1**. Beta exceeds $\beta_{no-wall}$
 - Damping decreases
 - RWM stable with near zero mode frequency

- **1**. Beta exceeds $\beta_{no-wall}$
 - Damping decreases
 - RWM stable with near zero mode frequency

2. Rotation increases

- Mode rotation increases, too

- **1**. Beta exceeds $\beta_{no-wall}$
 - Damping decreases
 - RWM stable with near zero mode frequency

2. Rotation increases

 Mode rotation increases, too

3. Rotation decreases at constant beta

- Mode rotation decreases
- Damping decreases

- **1**. Beta exceeds $\beta_{no-wall}$
 - Damping decreases
 - RWM stable with near zero mode frequency

2. Rotation increases

 Mode rotation increases, too

3. Rotation decreases at constant beta

- Mode rotation decreases
- Damping decreases

4. Onset of rotating mode

- **1**. Beta exceeds $\beta_{no-wall}$
 - Damping decreases
 - RWM stable with near zero mode frequency

2. Rotation increases

 Mode rotation increases, too

3. Rotation decreases at constant beta

- Mode rotation decreases
- Damping decreases
- 4. Onset of rotating mode

RWM stabilized despite near zero mode frequency

 Measured growth (damping) rate and mode rotation frequency:

t (ms)	γ _{RWM} (s ⁻¹)	ω _{RWM} (Hz)	
1400	-140	2±5	

RWM stabilized despite near zero mode frequency

 Measured growth (damping) rate and mode rotation frequency:

t (ms)	γ _{RWM} (s ⁻¹)	ω_{RWM} (Hz)
1400	-140	2±5

 Near zero mode rotation indicates strong interaction near plasma edge (i.e. q=4 surface)

RWM stabilized despite near zero mode frequency

 Measured growth (damping) rate and mode rotation frequency:

t (ms)	γ _{RWM} (s ⁻¹)	ω _{RWM} (Hz)
1400	-140	2±5
1900	-140	25±5

 Near zero mode rotation indicates strong interaction near plasma edge (i.e. q=4 surface)

Outline

- Measurement of rotation threshold for RWM stabilization with low NBI torque and good n=1 error field correction rotation
 - Rotation threshold significantly lower than thresholds obtained with n=1 magnetic braking
- Active MHD spectroscopy in low rotation plasmas
 - Evidence of weakly damped RWM with zero mode rotation frequency
- Comparison of low rotation threshold with theory
 - (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements
- Revisiting previous predictions of kinetic damping model
 - Weighted sum of the rotation at all resonant surfaces yields a better stability criterion

"Low li" plasmas (l_i ~ 0.67)

[La Haye et al, Nucl. Fusion 2004]

- Kinetic damping underestimates !

_{crit} by ~30%

"Low li" plasmas (l_i ~ 0.67)

[La Haye et al, Nucl. Fusion 2004]

- Kinetic damping underestimates _{crit} by ~30%
- "Moderate li" plasmas (l_i ~ 0.83)

[Reimerdes et al, Nucl. Fusion 2005]

 Kinetic damping underestimates _{crit} by ~70%

"Low li" plasmas (l_i ~ 0.67)

[La Haye et al, Nucl. Fusion 2004]

- Kinetic damping underestimates _{crit} by ~30%
- "Moderate li" plasmas (l_i ~ 0.83)

[Reimerdes et al, Nucl. Fusion 2005]

- Kinetic damping underestimates !
 crit by ~70%
- "JET shape" plasmas
 "Deimondon et al. Phys. Plasmas 20

[Reimerdes et al, Phys. Plasmas 2006]

 Kinetic damping underestimates _{crit} by ~20%

- Measured/predicted (MARS-F: kinetic damping) "Low li" plasmas (ℓ_i ~ 0.67) **RWM** rotation threshold 0.03 [La Haye et al, Nucl. Fusion 2004] Kinetic damping underestimates ! _{crit} by ~30% "Moderate li" plasmas (l_i ~ 0.83) 0.02 $\Omega_{
 m crit} \, au_{
 m A} \, (q=2)$ "Low l_i" [Reimerdes et al, Nucl. Fusion 2005] Kinetic damping underestimates _{crit} by ~70% "Moderate ℓ 0.01 "JET shape" plasmas "JET shape' [Reimerdes et al, Phys. Plasmas 2006] Kinetic damping underestimates ! _{crit} by ~20% 0.00 0.5 -0.50.0 .0 Cβ ideal-wall limit no-wall limit
- Kinetic damping underestimated the rotation threshold in previous magnetic braking experiments to various degrees

- "Low li" plasmas (ℓ_i ~ 0.67) [La Haye et al, Nucl. Fusion 2004]
 - Kinetic damping underestimates ! _{crit} by ~30%
 - "Moderate li" plasmas (l_i ~ 0.83)

[Reimerdes et al, Nucl. Fusion 2005]

- Kinetic damping underestimates _{crit} by ~70%
- "JET shape" plasmas [Reimerdes et al, Phys. Plasmas 2006]
 - Kinetic damping underestimates ! _{crit} by ~20%

"Moderate ℓ

"JET shape'

"Reduced

NBI torque"

0.0

no-wall limit

0.01

0.00

-0.5

Kinetic damping underestimated the rotation threshold in previous magnetic braking experiments to various degrees

0.5

Cβ

.0

ideal-wall limit

Kinetic damping model consistent with low rotation threshold

- Marginal stability predicted with ~65% of the experimental rotation
 - Corresponds to $\Omega_{crit} \tau_A = 0.2\%$ similar to experimental results

 Negative mode rotation suggests strong interaction near plasma edge (e.g. q=4)

Kinetic damping model consistent with low rotation threshold

- Marginal stability predicted with ~65% of the experimental rotation
 - Corresponds to $\Omega_{crit} \tau_A = 0.2\%$ similar to experimental results

 Negative mode rotation suggests strong interaction near plasma edge (e.g. q=4)

Kinetic damping model in surprisingly good agreement with observed β -dependence of RWM rotation threshold

 Kinetic damping predictions forms lower bound of observed rotation threshold

Kinetic damping model in surprisingly good agreement with observed β -dependence of RWM rotation threshold

- Kinetic damping predictions forms lower bound of observed rotation threshold
- Multiple reasons why experiment and theory should not agree
 - Difference between measured carbon impurity and deuterium main ion rotation can be significant
 - Model does not include poloidal rotation
 - NBI torque reduction is not described by simple scaling of rotation profile

Outline

- Measurement of rotation threshold for RWM stabilization with low NBI torque and good n=1 error field correction rotation
 - Rotation threshold significantly lower than thresholds obtained with n=1 magnetic braking
- Active MHD spectroscopy in low rotation plasmas
 - Evidence of weakly damped RWM with zero mode rotation frequency
- Comparison of low rotation threshold with theory
 - (Surprisingly) good agreement between kinetic damping model (in MARS-F) and measurements
- Revisiting previous predictions of kinetic damping model
 - Weighted sum of the rotation at all resonant surfaces yields a better stability criterion

- "Low li" plasmas (l_i ~ 0.67)
 - "High" critical rotation at q=2
 - Only 2 resonant surfaces with significant rotation

- "Low li" plasmas (l_i ~ 0.67)
 - "High" critical rotation at q=2
 - Only 2 resonant surfaces with significant rotation
- "Moderate li" plasmas (l_i ~ 0.83)
 - "Low" critical rotation at q=2
 - 3 resonant surfaces with rotation

0.03

- "Low li" plasmas (l_i ~ 0.67)
 - "High" critical rotation at q=2
 - Only 2 resonant surfaces with significant rotation
- "Moderate li" plasmas (l_i ~ 0.83)
 - "Low" critical rotation at q=2
 - 3 resonant surfaces with rotation
- "JET shape" plasmas
 - "Moderate" critical rotation at q=2
 - 3 resonant surfaces with rotation

Rotation profile at marginal stability (K.D., C_{β} =0.5) 0.04 Kinetic damping 109174 114094 121611

- "Low li" plasmas (l_i ~ 0.67)
 - "High" critical rotation at q=2
 - Only 2 resonant surfaces with significant rotation
- "Moderate li" plasmas (l_i ~ 0.83)
 - "Low" critical rotation at q=2
 - 3 resonant surfaces with rotation
- "JET shape" plasmas
 - "Moderate" critical rotation at q=2
 - 3 resonant surfaces with rotation
- "Low NBI torque" plasmas
 - "Lowest" critical rotation
 - 4 resonant surfaces with rotation

Rotation profile at marginal stability (K.D., $C_{\beta}=0.5$)

- "Low li" plasmas (l_i ~ 0.67)
 - "High" critical rotation at q=2
 - Only 2 resonant surfaces with significant rotation
- "Moderate li" plasmas (l_i ~ 0.83)
 - "Low" critical rotation at q=2
 - 3 resonant surfaces with rotation
- "JET shape" plasmas
 - "Moderate" critical rotation at q=2
 - 3 resonant surfaces with rotation
- "Low NBI torque" plasmas
 - "Lowest" critical rotation
 - 4 resonant surfaces with rotation

Rotation profile at marginal stability (K.D., $C_{\beta}=0.5$)

Weighted sum over rotation at all resonant surfaces may yield a better criterion for marginal stability

$\Omega_{crit} au_{A}$	q=2	<i>q</i> =3	<i>q</i> =4	q=5	$\sum \left(\left \Omega_{crit} \tau_{A} \right \right)_{k}$	$\sum \left(\left \Omega_{crit} \tau_{A} \right \right)_{k} q_{k}$	$\sum (\Omega_{crit} \tau_A)_k q_k^2$
Fast I _p ramp	0.0120	0.0035	0.0004	-	0.0159	0.0361	0.0859
Slow I _P ramp	0.0030	0.0018	0.0015	0.0002	0.0065	0.0184	0.0572
JET shape	0.0060	0.0007	0.0007	0.0001	0.0075	0.0174	0.0440
Reduced T _{NBI}	0.0020	0.0010	0.0031	0.0011	0.0072	0.0249	0.0941
Mean	0.0058	0.0018	0.0014	0.0005	0.0093	0.0242	0.0703
σ/mean	78%	72%	86%	120%	47%	36%	32%

- Kinetic damping predictions of $\Omega_{crit} \tau_A$ at q=2 varies by a factor of 6
- Weighted sums over all rational surfaces reduce the deviations in the criterion for marginal stability
 - Kinetic damping [Bondeson and Chu, PHP 1996] suggests $\Omega_{\rm crit} \tau_{\rm A} \propto q^{-2}$
 - Displacement profile expected to play a significant role, too

Low rotation threshold for RWM stabilization obtained with low NBI torque and good *n*=1 error field correction

- Critical rotation at the q=2 surface found as low as $\Omega_{crit}\tau_{A}=0.2-0.3\%$
 - Rotation threshold evaluated at q=2 is 2 to 10 times lower than suggested by previous experiments using n=1 "magnetic braking"
- Active MHD spectroscopy yields damped RWM with zero mode rotation frequency in plasmas with low NBI torque
 - Strong interaction with rotation near plasma edge, i.e. at q>2
- "Kinetic damping" model (calculated with MARS-F code) found consistent with the observed low rotation threshold
 - Rotation at higher q-surfaces (q>2) predicted to be important
 - Previous kinetic damping predictions of higher critical values at q=2 caused by different rotation profile shapes
 - Weighted sum of rotation at resonant surfaces (or volume integral) may lead to a better criterion for marginal stability
- Overestimation of rotation threshold with resonant magnetic braking and different rotation profile shapes with balanced beams, both, may reconcile new results with previous magnetic braking experiments

