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Outline

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• Measurement of rotation threshold for RWM stabilization with low NBI
torque and good n=1 error field correction rotation

– Rotation threshold significantly lower than thresholds obtained with

n=1 magnetic braking

• Active MHD spectroscopy in low rotation plasmas

– Evidence of weakly damped RWM with zero mode rotation

frequency

• Comparison of low rotation threshold with theory

– (Surprisingly) good agreement between kinetic damping model (in
MARS-F) and measurements

• Revisiting previous predictions of kinetic damping model

– Weighted sum of the rotation at all resonant surfaces yields a better

stability criterion
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Discharges are designed to have a low ideal MHD
no-wall stability limit

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• Ideal MHD stability limits for DCON
and MARS-F agree within 10%

–  N,no-wall (n=1) ~ 2.0 ~ 2.5 li

+ Supported by magnetic
braking experiments

–  N,ideal-wall (n=1) ~ 3.1



Reducing NBI torque and n=1 magnetic braking yield
very different rotation thresholds

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• NBI torque reduction and
correction of n=1 error field
yield RWM onset at low rotation

• Magnetic braking by removing
correction of n=1 error field yields
RWM onset at high rotation



Reducing NBI torque and n=1 magnetic braking yield
very different rotation thresholds

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• With reduced NBI torque the RWM
rotation threshold (for <0.85) is

significantly lower than with
magnetic braking

– Resonant braking can lead to

overestimation of linear RWM
threshold

• Charge exchange recombination
(CER) diagnostic measures carbon
impurity rotation

– Correction for deuterium

expected to be important

 A.M. Garofalo, Tuesday 11:45AM



Rotation threshold with reduced NBI torque and
corrected error field has only a weak -dependence

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• RWM onset occurs when rotation at =0.6 (q~2) reduced to rot A=0.2-0.3%



Outline

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• Measurement of rotation threshold for RWM stabilization with low NBI
torque and good n=1 error field correction rotation

– Rotation threshold significantly lower than thresholds obtained with

n=1 magnetic braking

• Active MHD spectroscopy in low rotation plasmas

– Evidence of weakly damped RWM with zero mode rotation

frequency

• Comparison of low rotation threshold with theory

– (Surprisingly) good agreement between kinetic damping model (in
MARS-F) and measurements

• Revisiting previous predictions of kinetic damping model

– Weighted sum of the rotation at all resonant surfaces yields a better

stability criterion



Measure frequency response to externally applied n=1
magnetic fields

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• Identical discharges

–  N=2.3 ~ 2.9 li

– moderate

rotation

• Apply rotating
m~3/n=1 magnetic
field with I-coil

– II-coil = 100 -180A

– fI-coil = -20 - +50Hz



Measure frequency response to externally applied n=1
magnetic fields

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• Frequency response described by single mode:
    

W

dBs

dt
0 WBs = Msc

*
Ic

• Frequency response fit yields: –  Msc = (2.73+ i0.15) G/kA (coupling coeff.)

–  0 = (-141+ i108) s-1 (growth rate)
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RWM stabilized despite near zero mode frequency

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• Measured growth (damping) rate
and mode rotation frequency:

2±5-1401400
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RWM stabilized despite near zero mode frequency

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• Measured growth (damping) rate
and mode rotation frequency:

• Near zero mode rotation
indicates strong interaction near
plasma edge (i.e. q=4 surface)

25±5-1401900

2±5-1401400

RWM (Hz)RWM (s-1)t (ms)
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Kinetic damping model consistent with low rotation
threshold

• Marginal stability predicted with ~65% of the experimental rotation

– Corresponds to crit A=0.2% - similar to experimental results

• Negative mode rotation
suggests strong interaction
near plasma edge (e.g. q=4)
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Kinetic damping model in surprisingly good agreement
with observed -dependence of RWM rotation threshold

• Kinetic damping predictions
forms lower bound of observed
rotation threshold

• Multiple reasons why experiment
and theory should not agree

– Difference between
measured carbon impurity

and deuterium main ion

rotation can be significant

– Model does not include
poloidal rotation

– NBI torque reduction is not

described by simple scaling of
rotation profile

H. Reimerdes, MHD workshop, PPPL, November 6, 2006
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Weighted sum over rotation at all resonant surfaces
may yield a better criterion for marginal stability
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• Kinetic damping predictions of crit A at q=2 varies by a factor of 6

• Weighted sums over all rational surfaces reduce the deviations in the
criterion for marginal stability

– Kinetic damping [Bondeson and Chu, PHP 1996] suggests crit A  q-2

– Displacement profile expected to play a significant role, too

H. Reimerdes, MHD workshop, PPPL, November 6, 2006



Low rotation threshold for RWM stabilization obtained
with low NBI torque and good n=1 error field correction

H. Reimerdes, MHD workshop, PPPL, November 6, 2006

• Critical rotation at the q=2 surface found as low as crit A=0.2-0.3%

– Rotation threshold evaluated at q=2 is 2 to 10 times lower than
suggested by previous experiments using  n=1 “magnetic braking”

• Active MHD spectroscopy yields damped RWM with zero mode rotation
frequency in plasmas with low NBI torque

– Strong interaction with rotation near plasma edge, i.e. at q>2

• “Kinetic damping” model (calculated with MARS-F code) found
consistent with the observed low rotation threshold

– Rotation at higher q-surfaces (q>2) predicted to be important

– Previous kinetic damping predictions of higher critical values at q=2

caused by different rotation profile shapes

– Weighted sum of rotation at resonant surfaces (or volume integral)
may lead to a better criterion for marginal stability

• Overestimation of rotation threshold with resonant magnetic braking and
different rotation profile shapes with balanced beams, both, may
reconcile new results with previous magnetic braking experiments


