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Motivation

Optimize RWM and MHD control. Especially to clarify
performance issues for low rotation burning plasmas in
ITER

Consider coil geometry fixed (ITER external error field-
RWM feedback coil set) and ask the question: How
close to the ideal wall limit can we get?

Concentrate on feedback loop optimization to achieve
the highest possible performance

• Control algorithm development
• Optimal control theory (O. Katsuro-Hopkins)
• Observer design using reduced models



Outline and Introduction

• Introduction to linear observers

• Model reduction based on eigenmodes

• Discuss VALEN circuit equations

• Results for HBT-EP and DIII-D

• Summary and future work



What Is An Observer?

An observer is a dynamical system that is picked to
converge to the true “state” of the system using
knowledge of the estimate, control input, and
measurements of the true state.

€ 

ˆ I  system estimate, 

€ 

Vf  control input, and sensor fluxes 

€ 

Φs

€ 

d ˆ I 
dt

= Aˆ I + BVf + FΦs

Pick 

€ 

A,B,F such that 

€ 

ˆ I (t)− I (t) → 0 asymptotically,
independent of the control input



Circuit Theory Observers

An observer uses a system model and real time
measurements to estimate RWM amplitude and phase.

  

€ 

d ˆ I 
dt

= L−1R ˆ I + L−1Vf + K(Φs −Ls
ˆ I )

Pick the observer gains using pole placement, LQG, or Kalman’s
prescription if stochastic

Want good model for   

€ 

L−1R,L−1,Ls.  And we want it “small”



Reduced Models
Various approaches

----Input-output relations
----Estimation techniques
----1st principle models

Can we construct a simple quantitative RWM model that retains
the physics content of slab or cylindrical models that we like to
use.(Fitzpatrick-Aydemir, Garofalo-Jensen, Okabayashi et al., etc…)

Start with full VALEN finite element model of the plasma, wall,
feedback, and sensor coils.

Develop model of unstable mode first… then add sensors and
other coils.



VALEN Circuit Equations
After including plasma stability effects the fluxes at the wall, plasma, and
feedback coils are given by (J. Bialek)
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Using Faraday and Ohms law yields equations for system evolution
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This can easily be put in state space form…



Quantitative Reduced Models

Need to construct quantitative eigenmode models for observer
design and feedback loop optimization
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Lww

dIw
dt

+Lwf

dI f
dt

= −RwIw
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L fw

dIw
dt

+L ff

dI f
dt

= −Rf I f +Vf

Use current representation rather than fluxes. How can we use
large scale codes to generate small order reduced models.

Want to move away from simple slab or cylindrical approximations



Single Circuit Theory
The effective inductances of circuit theory can always be written as the sum of
two distinct terms (Boozer PoP 1998 & 2004)

Example:  wall effective inductance…

  

€ 

Lww = −LwD(s)     with,   

€ 

D(s) =
1+ s
s
c−1

RWM evolution given by

€ 

dIw
dt

=
Rw

LwD(s)
Iw

with

Plasma-wall coupling:  

€ 

c ≡
Mpw

2

LpLw
  Wall time: 

€ 

1/τ w =
Rw

Lw



Use VALEN Spectral Decomposition
VALEN solves the genearalized eigenvalue problem

€ 

LwwIk = λkRww Ik
LwwΨ = RwwΨΛ

No plasma: 

€ 

Lww ,Rww  sym. pos. definite
Passive stabilization:   

€ 

Lww becomes sym. indefinite
Feedback: 

€ 

Rww becomes nonnormal

€ 

Ψ =QT
Ψ tRwwΨ =1
Ψ t LwwΨ =Λ

€ 

Λ−1 = Ψ−1Lww
−1 RwwΨ



Contract or Project VALEN Matrices Using Eigenmodes

Evaluate equivalent VALEN matrices and identify the single circuit formula with the
unstable eigenmode matrix elements

VALEN contains generalizations of the effective inductances and coupling constant and
wall time mentioned in the context of single circuit theory.
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Insert back into matrix equations, neglecting the everything except for the wall
currents
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Matrix Contractions Yield Plasma Wall Coupling & Wall Time

Typically have one unstable mode and many damped modes of the coupled
plasma wall system, say mode=1 is unstable, and modes 2,3,… are stable

Equate VALEN matrix elements with the simple single circuit equations and
derive formula for the “effective” plasma-wall coupling and wall time constant
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HBT-EP Conducting Wall Structure



Plasma-Wall Coupling

0

0.05

0.1

0.15

0.2

0.25

0.001 0.01 0.1 1 10 100

HBT-EP Al 4cm SS 0cm

plasma-wall coupling, c
pl

as
m

a-
wa

ll c
ou

pl
in

g,
 c

s/scrit

Resistive branch 
couples to Al shells 
out 4 cm with c~0.05

Inductive solution 
causes coupling to 
SS shells at 0cm
increasing plasma
wall coupling



Wall Time Constant
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Eigenvalue-Growth Rate Comparison
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Poor Agreement Near the Ideal Limit
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Include Effect of Ideal Mode and Feedback Coil

Evaluate equivalent VALEN matrices and identify the single circuit formula with
the unstable eigenmode matrix elements using the entire mode currents

VALEN contains generalizations of the effective inductances and coupling
constants mentioned in the context of single circuit theory.
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Good Agreement Including Ideal Mode
And Feedback Coil Contributions
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Symmetric DIII-D Vacuum Vessel Model



  DIII-D Eigenmode Spectrum
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Damped Modes Have Negligible Plasma Effects
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Error in Damped Mode Calculation
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Conclusions
• VALEN eigenmode calculations can be used to construct a simple ODE
model of the RWM with beta dependent coefficients that allows accurate
calculation of mode growth rates between the no wall and ideal wall
limits for HBT-EP and DIII-D

• Each eigenmode can be characterized by two beta (plasma stability)
dependent numbers: the plasma wall coupling and wall time for that
mode.

• The plasma wall coupling is large for only the RWM and ideal mode.
The coupling for the damped eigenmodes of the system is essentially
zero, c ~ 0.  Indicating that their eigenvalues are simply the damped
modes of the wall.

• We have successfully incorporated the simulated VALEN ideal mode
and feedback coils as passive elements into the model, and now have
good numerical agreement up to the ideal limit for the passive case



Future Work

• Develop passive stabilization model for ITER with and without blankets

• Add sensor and feedback coils to develop full state space model that
can be used to design observers and optimal controllers

• Incorporate more complicated plasma models (rotation, sin-cos
components to account for mode phase, others…)


