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Introduction

• Development of a finite-volume-based full-MHD code, MHFVSP

Upgraded to deal with unstructured triangular elements

Recent progress of MHFVSP code

Implementation of the pseudo-vacuum model

• Finite volume method 
Valid for the boundaries with an arbitrary geometry
Possible to naturally discretize the conservation law

Expected to improve the issue of divergence-free condition

•

•

Nonlinear simulation study using MHFVSP code•

Interactions among different scale modes and its role in the 
saturation mechanism

Deal with MHD eq. by adding a magnetic source term to fluid eq.
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An electromagnetic source term and a diffusion term is added to 
the conservation laws of fluid dynamics

Compressible MHD equations

∂
∂ t

  = ∇⋅V 

∂
∂ t  V   = ∇⋅ V V p I  J×B  ∇⋅ ∇ V 

∂
∂ t

B  = ∇ ×E J  = ∇×B

T = p / 

∂
∂ t  p

1 = ∇⋅ p
1

V p ∇⋅V  ∇⋅∥∇∥T 

E  = V×B   J



4Differential operators at the centroid is discretized
 by the cell-centered finite-volume method
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• Scalar and vector functions are discretized by 
a spectral method in the toroidal direction, ϕ 
.

• Following the cell-centered finite volume method, normal component 
and toroidal component of the vector function are defined at the 
triangular edges and the cell centroid, respectively.

 ∇⋅A  i ≃ 1
Ri Si

∑
e

Re ne⋅Ae  le
ℑ n
Ri

e⋅Ai
  

A  R , , z  =  ∑ A R , z eℑn

Discretization formulae for the divergence of a vector function A is 
described by

.

• Poloidal plane is composed of the triangular 
(or quadrilateral) elements 

f  R , , z  =  ∑ f R , z eℑn

•



5Differential operators at the centroid is discretized
 by the cell-centered finite-volume method
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Following above manner, the divergence of a tensor, the gradient of a 
scalar and of a vector at the cell centroid are obtained as follows.

.



6Another discretization is introduced 
only for the rotation operator
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Here, the divergence free of the rotation is satisfied numerically!!
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7Implementation of a semi-implicit method 
for the time integration is now underway

 V n1
 V n

 t
 =  F  V n1

 MF  V n

The fast part (F) of the full MHD operator (M) is treated implicitly.
( cf. Schnack 1987 )

 I t G  V n1  =  I t M  V n
  t G V n

For an arbitrary semi-implicit operator G

G is chosen in consideration of the linearized MHD wave equation.

Semi-implicit operatorExplicit 

We use a Laplacian semi-implicit operator for simplicity.

G1  V   =  t ∇×∇ ×V×B0×B0

G2 V   =   t V A0
2 ∇2V  V A0 =

B0

0



8Equilibrium code, mesh generation code and 
parallelization has been implemented

• TOKAMAK equilibrium code MEUDAS which solves Grad–Shafranov 
eq.  is used.

• Delaunay triangulations are constructed by Sloan's fast algorithm 
(Sloan, 1987).

•

METIS (Karypis and Kumar, 1999) is used for partitioning meshes.

MPI is used for parallelization.
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Nonlinear interactions among different scale MHD 

fluctuations are studied by MHFVSP code

High-n ballooning modes are excited by the equilibrium distortion 
and/or local pressure steepening due to the growth of the n=1 
kink mode

• Previous works by Park (1995) or Nishimura (1999)

• Viewpoint of this work

Nonlinear evolution of high-n ballooning modes coexisting with a 
growing n=1 kink mode, and the role of interactions in the 
saturation mechanism

As for this study, the vacuum region is not 
considered. The last closed flux surface is 
fixed at the perfect conducting boundary.

*

A=3



10q and P profiles are chosen as kink and 
ballooning modes exist close to each other

Pn=1

Pn=12

n=20

n=1 ： internal kink mode

Middle- and high- n ： ballooning modes

2 < n << 12                   (group A)
n ~ 12 (most unstable)    (group B)
n >> 12                     (group C)
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11Nonlinearly growing secondary modes 
form a helical structure  
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Nonlinearly growing secondary modes 
partially show a helically distorted 
structure, which suggests the phase of 
the ballooning modes aligns with that of 
the kink mode.



12Ballooning fingers appears helically 
and then, they might seems to be saturated

•

Since the vacuum field might play an important role in energy transfer process, 
we are trying to implement a pseudo-vacuum model to improve the boundary 
condition.

In order to discuss the role of such a helical structure of ballooning modes  
in the saturation phenomena, the simulation needs to be advanced to the 
saturation process without numerical errors.

Pressure at t=2400
ϕ=0 ϕ=π/2

ϕ=π ϕ=3π/2

R R

R R

Fluctuations of the ballooning modes might seem to be saturated, although 
the simulation has not been completed due to the numerical overshooting.
The saturation might be caused by that fingers disappear in the bad-
curvature region at ϕ=π plane and appear in the good-curvature region 
where they are stable.

•

•

•
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13Preliminary test has been done for 
a pseudo-vacuum model implemented code

• Replace the vacuum by low-dense and high-resistive plasma

0 = 1.0  , v = 0.1
0 = 104  , v = 101

Preliminary test of the external kink mode in a cylindrical model 
case

•

Larger ηv/η0 and smaller ρv/ρ0 are now being calculated.
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Summary

• Recent progress of the development of a compressible full-MHD 
code based on the finite-volume method, MHFVSP code, is presented.

Discretization formulae of differential operators satisfying the 
divergence free condition of the magnetic field are shown .

Equilibrium code, mesh generation code, parallelization and pseudo-
vacuum model has been implemented.

• Evolution of high-n ballooning modes interacting with a low-n kink 
mode is investigated.

The coupling among linear ballooning modes generates nonlinearly 
growing secondary modes which exhibit the helically distorted 
ballooning structure due to the interactions with the n=1 kink mode. 

Since the helically distorted ballooning structure is not localized in the 
bad-curvature region, it might play a role in the reduction of the growth 
of the modes or the saturation, although further investigations are 
required to clear the detailed mechanism.


