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Introduction

In this study, we show new features of the magnetic island, which is driven by the externally
applied perturbation for the tearing stable resonant surface in the rotating plasma.

Even for the tearing stable rational surface, the magnetic island is excited by the
external perturbation like as the error field, MHD instability etc..

This kind of the magnetic island is thought as an important source of the seed
island for the neoclassical tearing mode.

In the previous studies, the critical external perturbation for the explosive growth of
the magnetic island is mainly investigated.

However, long term evolution of the forced magnetic island is also important to the tokamak
plasma performance.

In this study, we investigate the time evolution of the forced magnetic island in the
rotating plasma and show the existence of the new evolution phase, which becomes

important in the low collisionarity regime.



Model Equations

Resistive reduced MHD egs. in cylindrical geometry (incompressible, strong B,, zero p)
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Island evolution and motion in the poloidal direction
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Y% wi/oflow : magnetic island grows monotonically.

w/ flow : magnetic island grows rapidly after slow growth phase.
In phase B, magnetic island moves in the poloidal direction.

Y% A flow-suppressed growth phase
B : rapid growth phase
C : Rutherford-like phase



Contour plots of poloidal flux function and flow potential

w/ flow solid line : poloidal flux function ¥* colored contour : flow potential ®
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Magnetic island evolution and flow damping
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Y The rapid growth of the forced magnetic island occurs when V% at g=2 rational
surface becomes less than the critical value.

Y% Plasma flow decreases to zero around the resonant surface as the magnetic island
grows.

Y% This relation ship between the trigger timing and the flow reduction is consistent
with former studies.



Critical value for the onset of the rapid island growth
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Y¢ we_. shows the dependence on n, and the exponent o increases as the increasing

rate of the &t becomes small.

—> balance between the externally applied perturbation and the dissipation is

important to the critical value.

Yo et shows the weak dependence on u for both cases of
d/dty* =107 in the parameter region used in this study.

d/dty®™ =10° and



n effects on the nonlinear evolution of the magnetic island

0% ... ... lInthe high resistivity regime 7 >5x10 "
f - the magnetic island growth is divided
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© i ] .
= A / © C : Rutherford-like phase
T 0.2 ]
S
a In the low resistivity regime, 7 <1x107°
e T - the magnetic island growth seems to
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phase is reduced by the resistivity.

4) Long term Rutherford-like feature is also affected by the reduction of the resistivity.

> n effects becomes important not in high n regime but in the low 1 regime.



n.dependence of the growth rate in the flow-suppressed and

rapid growth phase
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¢ In the flow-suppressed growth phase (A), the growth rate shows the strong
dependence on the resistivity, n.

Y In the rapid growth phase (B), the temporal growth rate shows the week dependence

on the resistivity, 7.

——> possibility of the phase instability
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Trajectory of X-point and O-point in O-direction
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Y< Inthe rapid growth phase, the X- and O-point start to move in the poloidal direction.

Y< In transition phase, X- and O-points oscillate in the poloidal direction moving in the
O-direction.

Y% The oscillation term of the X- and O-point becomes longer as n becomes small.

Y% In the Rutherford-like phase, X- and O-points lock to the external perturbation.



2"d jsland formation in the transient phase
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pAe Magnetic island deformation is caused by the flow and island motion in 6-direction.
Y Second islands are formed at transition phase (phase C) around the initial X-point.



Torgue analysis
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Electromagnetic torque T (r,@)=ré&,-J xB
Inertial torque T, (r,0)=rg, (\7 VNV
Viscous torque T)(r,0)=r8, - iV
Total torque T, (r,0)=T™(r,0)+T)(r,0)-T,(r,0)

(p=1is assumed)



Contour plots of the total torque and magnetic island y*
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Y Total torque becomes positive around O-point and negative around X-point.

Y Non-monotonic profile of total torque causes the complex poloidal motion.
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¢ In flow-suppressed growth phase, T,*M is dominant and T, is small.

Y¢ In rapid growth and transition phases, T4 increases.




Trajectory of X-point and O-point in 8-direction for Different n
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Y¢ Deviation of the AB(O-X) phase difference from n/2 is interpreted as formation of
the Y-type reconnection region.

¢ AB(O-X) becomes large as 1 is decreased. = Strong island deformation in the low n region.



Current Peak for the Different Resistivity
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Summary

Y Time evolution of the forced magnetic island in the rotating plasma can be divided
into four phases.

Phase A : flow-suppressed phase

Phase B : explosive growth phase
Phase C : transition phase

Phase D : Rutherford-like phase
As the resistivity becomes low, phase C becomes more dominant.
1) Phase C starts at early time, when the magnetic island with is still small.

2) Duration of phase C becomes longer as n becomes small.

< The second island formation by the stretching the X-type reconnection region to
the Y-type one is found. This change of the reconnection region is caused by
the flow driven island deformation.

Y¢ It is shown that the 2-dimensional non-monotonic torque profile is important to
the complex island motion.

Y% The second island formation around the initial X-point may be an important
mechanism for the NTM threshold.



