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Resistive Wall Mode Stabilization is Needed for Steady

State Tokamak Operation at High Fusion Perfformance
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Resistive Wall Mode Stabilization is Needed for Steady

State Tokamak Operation at High Fusion Perfformance

- ITER Steady-State scenario (#4) requires VALEN RWM feedback modeling:
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Resistive Wall Mode Stabilization is Needed for Steady

State Tokamak Operation at High Fusion Perfformance

ITER Steady-State scenario (#4) requires
Resistive Wall Mode stabilization

- Target: B~ 3, above the no-wall
stability limit pro-wal~ 2.5

Sufficient plasma rotation could
stabilize RWM up to ideal-wall g, limit

Present ITER design of external error
field correction coils is predicted to
allow RWM feedback stabilization if
plasma rotation is not sufficient

Improved design for RWM stabilization
could allow studies of scenarios
approaching advanced tokamak
reactor concepts, i.e. B, > 4

VALEN RWM feedback modeling:
ITER with blanket (ports covered)
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RWM Stabilization by Rotation Allows Demonstration
of High Perfformance Tokamak Regimes

Hgg=2.5
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 High B, . high bootstrap current fraction, high energy confinement
sustained simultaneously for 2 s in DIII-D
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RWM Stabilization by Rotation Allows Demonstration
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RWM Stabilization by Rotation Allows Demonstration
of High Perfformance Tokamak Regimes
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 High B, . high bootstrap current fraction, high energy confinement
sustained simultaneously for 2 s in DIII-D

* Multiple control tools needed, including
— Simultaneous ramping of plasma current and toroidal field
— Simultaneous feedback control of error fields and RWM
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Plasma Rotation Control is Needed to Explore

Regime of High Beta and Low Rotation

 Plasma rotation is sufficient to stabilize RWMs in most DIlI-D scenarios
with all co-injected neutral beams (same direction as 1)

— Unidirectional NB heating in high beta plasmas applies strong torque

— Difficult fo test RWM feedback control under realistic reactor
conditions

 Resonant and non-resonant |-coil Vessel
magnetic braking to
reduce the rotation have
disadvantages

— Feedback system tends ‘
to respond to applied
resonant braking field

— Fine control is difficult:
rotation fends to lock

C-coll
¥

— Once locked, braking
field may excite islands
in the plasma

Poloidal Field Sensor




Magnetic Braking Using n=1 External or Intrinsic Fields

Yields RWM Rotation Thresholds ~O(1%) of Q, (q=2 or 3)

* DIII-D using only uni-directional NBI:

— Magnetic braking is applied by removing the empirical correction of the
intrinsic N=1 error field
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Resonant Braking Provides Demonstration of

Transient Feedback Stabilization at Low Rotation

* |-coil feedback sustains beta (for ~30¢, ) in
discharge with near-zero rotation at all n=1
rational surfaces

« Comparison case without feedback is unstable
even with lower beta and faster rotation
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Non-Resonant n=3 Braking Did Not Give Access to

the Low-rotation Regime

* n=3 magnetic braking can create large drag torque
* RWM remains stable when correction of n=1 error field is optimal (DEFC)

e Braking effect saturates as
braking field is increased

* Saturated rotation agrees with
neoclassical toroidal viscosity
model

Q, ~ 2/3VT./(Z,eB,R)

— K.C. Shaing, S.P. Hirshman
and J.D. Callen, Phys.
Fluids 29, 521 (1986)
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Non-Resonant n=3 Braking Can Give Access to

Unstable RWM, If n=1 Error Correction Is Non-optimal

* C-coil used for n=1 error field correction (red=optimal)
* |-coil used for n=3 magnetic braking
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Balanced injection provides effective rotation

conirol without magnetic perturbations

* Magnetic braking experiments suggested L?ﬁ ‘gew of
that RWM stabilization requires mid-radius ]
plasma rotation ~O(1%) of the Alfven -

(co-

fl‘equency, QA injection)
— This level of rotation may not be realized
in ITER

» Recent experiments using balanced NBI in
DIlI-D (and JT-60U) show that the plasma i
rotation needed for RWM stabilization is much
slower than previously thought

- ~0O(0.1%) of @,
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 Even with sufficient rotation, active feedback
may still be needed, but the system o
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Much Slower Rotation Before RWM Onset is Observed by

Reducing the Injected Torque With Minimized Error Fields

* DIII-D using a varying mix of co and counter NBI:
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Weak p-Dependence is Observed for Rotation

Thresholds Measured With Minimized Error Fields
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*  RWM onset (7) observed when V, at g=2 is ~10-20 km/s, or ~0.3% of
local V,




Independent, Simultaneous Discovery of Low RWM

Rotation Thresholds in DIlI-D and JT-60U

[Takechi, IAEA FEC 2006]
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Profiles at RWM Onset Suggest Rotation in the

Ovuter Region of the Plasma Is Important
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MHD Spectroscopic Measurements With Varying

Plasma Rotation Shows Importance of Edge Rotation
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Sensitivity to Error Fields Confirms

By Is Above No-Wall Limit

* Ideal MHD stability calculations < Sensitivity to field asymmetries brackets
(DCON code and GATO code) Byowall between 2.3/, and 2.5¢,
predict gynowall = (2.520.1)¢ consistent with stability calculations
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MHD Spectroscopic Measurements With Varying

Explain Sharp Threshold of Sensitivity to Error Fields
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Ideal MHD With Kinetic Damping Model of Dissipation

Is Consistent With New Low Threshold Rotation

0.03
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with 70% of experimental 0.02 s ° ‘,“. .
rotation profile for balanced o °
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-0.5 00 . 05 1.0
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 Sound wave damping model needs at least 300% of experimental
rotation profile for marginal stability




MARS-F With Kinetic Damping Model Suggests

Importance of Plasma Rotation Near the Edge

* Experimental rotation profile is scaled to R 126496 @t=3600ms Cp~0.6
find marginal stability ' RWM o ]
— RWM growth rate yp and mode oocost %\ growth rate 3 -
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High Rotation Threshold Measured With Magnetic Braking

Is Consistent With Torque-balance Equilibrium Bifurcation

Increasing static resonant error
field (n=m/q) leads to bifurcation in
torque-balance equilibrium of
plasma
— Rotation must jump from a high
value to essentially locked
“Induction motor” model of error
field-driven reconnection
[Fitzpatrick]:
— Plasma rotation aft critical point,
V.i~1/2 of unperturbed rotation, V,
Lower neutral beam torque gives
lower V,, therefore a lower V_ at
entrance to “forbidden band of
rotation”

IDNAL FUSION FACITV
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"Forbidden Band" of Rotation Results in a Higher

Effective Rotation Threshold for RWM Onset

* With no error field, torque balance requires NB torque = viscous torque

dL/at

Stable torque
balance
equilibrium

TN - LT




"Forbidden Band" of Rotation Results in a Higher

Effective Rotation Threshold for RWM Onset

* With uncorrected error field, resonant field amplification by stable RWM leads
to large electromagnetic torque

dL/dt

Stable torque
balance
equilibrium

Tng - LT, /




"Forbidden Band" of Rotation Results in a Higher

Effective Rotation Threshold for RWM Onset

* With uncorrected error field, resonant field amplification by stable RWM leads
to large electromagnetic torque increasing with beta above no-wall limit

dL/dt

Stable torque
balance
equilibrium

TNB - L/’V




"Forbidden Band" of Rotation Results in a Higher

Effective Rotation Threshold for RWM Onset

* With uncorrected error field, resonant field amplification by stable RWM leads
to large electromagnetic torque increasing with beta above no-wall limit

dL/dt

Torque
balance
equilibrium

~Lyl2 Lo




"Forbidden Band" of Rotation Results in a Higher

Effective Rotation Threshold for RWM Onset

* With uncorrected error field, resonant field amplification by stable RWM leads
to large electromagnetic torque increasing with beta above no-wall limit

* As perturbation amplitude increases, torque
balance jumps to low-rotation branch

dL/at




"Forbidden Band" of Rotation Results in a Higher

Effective Rotation Threshold for RWM Onset

* With uncorrected error field, resonant field amplification by stable RWM leads
to large electromagnetic torque increasing with beta above no-wall limit

* As perturbation amplitude increases, torque
balance jumps to low-rotation branch

: Eorbidden band
’ of rotdion

dL/at




"Forbidden Band" of Rotation Results in a Higher

Effective Rotation Threshold for RWM Onset

* With uncorrected error field, resonant field amplification by stable RWM leads
to large electromagnetic torque increasing with beta above no-wall limit

* As perturbation amplitude increases, torque — RWM stabilization
balance jumps to low-rotation branch :  threshold

* With large non-axisymmetric field, bifurcation
of rotation occurs above RWM threshold

t  Forbidden band
[ of rotegion

dL/at
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"Forbidden Band" of Rotation Results in a Higher

Effective Rotation Threshold for RWM Onset

* With uncorrected error field, resonant field amplification by stable RWM leads
to large electromagnetic torque increasing with beta above no-wall limit

* As perturbation amplitude increases, torque «— RWNM stabilization
balance jumps to low-rotation branch : threshold

* With large non-axisymmetric field, bifurcation !

of rotation occurs above RWM threshold N
3 97798 97602 ’ Forbidden band

dL/dt of r?t lon
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Plasma Toroidal Rotation (km/s) .
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Recent Model by Fitzpairick Includes RWM Dispersion

Relation With Neoclassical Poloidal Viscosity
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Offset Rotation, Not Bifurcation, Observed With

Non-resonant n=3 Braking and ~Balanced Injection

Optimal correction of n=1 error field Optimal n=1 correction

+ n=3 braking
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With Optimal Error Field Correction, RWM Stabilization at

Very Slow Plasma Rotation Sustained for >300 Wall Times

126496
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In High Performance Plasmas (Rapid Rotation)

Active RWM Feedback Is Required

* In DIII-D, high rotation is maintained with large, slow-varying n=1
currents in external coils for error field correction

* Smaller, faster-varying n=1 currents in internal coils respond to transient
events (e.g. large ELMs), maintain RWM stabilization
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RWM Feedback at Slow Rotation More Difficult

Than Anticipated

* First attempts of RWM feedback not yet conclusive

* Onset of 2/1 tearing mode | | ' ' _ 125703 125709
frequently observed near 3'°§ B ]
RWM onset 2.50 E

— High susceptibility to 2.0; fem=zsczké-T oo~ —aoNo~-T
tearing in the vicinity of 4 5F | ,
an ideal MHD stability - Q5 (q~2) (kradls) E
.. 60 ]
limit “ ]

— High susceptibility to 205 E
penefration of resonant & | . "~ RWM rotation threshold E
non-axisymmetric fields  ,,f Bp(n=oddj (G) RWM —a N

(RWM at amplitude
below detection) at

very slow rotation 20 n=1tearing mode
2000 2200 2400 2600 2800 3000 3200
Time (ms)
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RWM Stabilized With Near-balanced

Neutral Beam Injection

* The plasma rotation needed for RWM stabilization is much slower
than previously thought -> Qt,~0.3% at q=2

— Achieved with neutral beam line re-orientation in DIII-D:

* Balanced neutral beam injection -> lower injected torque
and plasma rotation with minimized non-axisymmetric fields

— Such a slow rotation should be achievable in ITER

* Resonant magnetic braking experiments overestimate the critical
rotation

— Induction motor model of error field driven reconnection can
explain observation of higher apparent thresholds

— Non-resonant braking cannot slow rotation below RWM low
threshold, consistent with NTV theory

* |deal MHD with dissipation (MARS-F with kinetic model) is
consistent with experimental observations

— Edge plasma rotation may be crucial
* Even with sufficient rotation, active RWM feedback is still needed
— System requirements for ITER could be reduced
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